Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lens replacement material holds prospect of ’young’ eyes for people over 40

09.09.2003


A gel-like material being developed by scientists at the VA Hospital and Washington University in St. Louis could eventually mean the end of bifocals and contacts for millions of middle age and older people who suffer from presbyopia — literally "old vision." The material, which could be used to replace old hardened lenses in patients, including those with cataracts, was described today at the 226th national meeting of the American Chemical Society, the world’s largest scientific society.



While not a life-threatening condition, presbyopia affects nearly everyone over the age of about 40 or 45. As people age, according to one theory, the lenses in their eyes slowly harden making it more and more difficult to focus on nearby objects. The current solution for most people is reading glasses or contacts. Even people who undergo corrective laser surgery often still need glasses for reading and up close focusing.

"Our idea is that if we can remove the lens and put in a material that is soft, like a young healthy lens is at age 20, then they would have their accommodative ability restored," says researcher Madalene Fetsch. "They would be able to focus on near and far objects."


Fetsch, a graduate assistant in Washington University’s department of biomedical engineering, is working under the mentorship of Dr. Nathan Ravi, M.D., Ph.D., principal investigator in the development of the replacement lens material. He is an associate professor of ophthalmology and professor of chemical engineering at the school. He also is director of ophthalmology for VA Heartland hospitals in the Midwest.

The material, which is currently in lab testing, is a hydrophobically modified hydrogel. Hydrogels are used in many extended wear contact lenses.

"The gels can be made soft to the touch and have viscoelastic properties similar to that of the natural human lens," according to Fetsch. "At the same time, our material so far looks like it has the potential to be injectable, which means less invasive surgery."

Other research groups are also working on replacement lens materials, but Fetsch believes her material is different in several ways. One significant difference, she says, is reversible disulfide bonds. "This means that after forming the gel, we can reduce the bonds, liquefying the gel again so that it can be injected into the lens capsular bag." Once in the bag, the material reforms to a gel under natural physiological conditions.

One advantage of this is that only a very small injection hole is required to place the lens material in the bag, thus avoiding the common surgical technique of cutting a slit to insert a replacement lens. Fetsch says the hole would be small enough that stitches would not be required after the lens material is placed in the capsular bag.

Fetsch is hopeful that animal testing can begin in one year. But first, the researchers have to improve the materials’ refractive index — the degree at which it refracts light, which is key to how well you can focus with the material.

"Right now, in this particular system, that’s a little low," Fetsch admits. "It’s not good enough to be able to see more than blurry. But it’s something we think we can bring up with just simple modifications." Other scientists have been successful in improving the refractive index in similar soft gels, according to the researchers.

The material the research group is using to form the reversible bonds — acrylamide — is a known neurotoxin, but Fetsch doesn’t think that will be a problem because the acrylamide is polymerized.

"It sounds ludicrous to put [acrylamide] in the body, but the idea is that polyacrylamide when it’s in long chains is not toxic to the body as far as we know," Fetsch says. Additionally, before injection, thorough washing of the material would get rid of any traces of acrylamide, she adds.

The polymerization process also can be used for other biocompatible acrylamide derivatives, the researchers say.

While acknowledging that there is still a lot of work left before an injectable lens could become a reality, Fetsch has an idea of how the material might be introduced.

"Assuming that we made it all the way to human studies, we probably would first offer it to cataract patients because by that time they almost certainly have presbyopia and they’re looking at a similar surgery anyway." After that, Fetsch says, it could be offered to people with presbyopia who otherwise have healthy vision but don’t want to wear glasses or contacts.

The Veteran’s Administration Merit Review Grant provided funding support for the research.


The poster on this research, PMSE 317, will be presented at 8:00 p.m., Monday, Sept. 8, at the Javits Convention Center, North Pavilion, during Sci-Mix, and at 5:30 p.m., Tuesday, Sept. 9, at the Hilton New York, Rhinelander Center, during a joint PMSE/POLY poster session.

Madalene D. Fetsch is a graduate assistant in the Department of Biomedical Engineering at Washington University’s School of Engineering and Applied Science in St. Louis, Mo.

V. Nathan Ravi, M.D., Ph.D., is an associate professor of ophthalmology and visual sciences at Washington University’s School of Medicine and professor of chemical engineering at Washington University in St. Louis, Mo., and the director of ophthalmology for VA Heartland hospitals in the Midwest.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org/

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>