Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lens replacement material holds prospect of ’young’ eyes for people over 40

09.09.2003


A gel-like material being developed by scientists at the VA Hospital and Washington University in St. Louis could eventually mean the end of bifocals and contacts for millions of middle age and older people who suffer from presbyopia — literally "old vision." The material, which could be used to replace old hardened lenses in patients, including those with cataracts, was described today at the 226th national meeting of the American Chemical Society, the world’s largest scientific society.



While not a life-threatening condition, presbyopia affects nearly everyone over the age of about 40 or 45. As people age, according to one theory, the lenses in their eyes slowly harden making it more and more difficult to focus on nearby objects. The current solution for most people is reading glasses or contacts. Even people who undergo corrective laser surgery often still need glasses for reading and up close focusing.

"Our idea is that if we can remove the lens and put in a material that is soft, like a young healthy lens is at age 20, then they would have their accommodative ability restored," says researcher Madalene Fetsch. "They would be able to focus on near and far objects."


Fetsch, a graduate assistant in Washington University’s department of biomedical engineering, is working under the mentorship of Dr. Nathan Ravi, M.D., Ph.D., principal investigator in the development of the replacement lens material. He is an associate professor of ophthalmology and professor of chemical engineering at the school. He also is director of ophthalmology for VA Heartland hospitals in the Midwest.

The material, which is currently in lab testing, is a hydrophobically modified hydrogel. Hydrogels are used in many extended wear contact lenses.

"The gels can be made soft to the touch and have viscoelastic properties similar to that of the natural human lens," according to Fetsch. "At the same time, our material so far looks like it has the potential to be injectable, which means less invasive surgery."

Other research groups are also working on replacement lens materials, but Fetsch believes her material is different in several ways. One significant difference, she says, is reversible disulfide bonds. "This means that after forming the gel, we can reduce the bonds, liquefying the gel again so that it can be injected into the lens capsular bag." Once in the bag, the material reforms to a gel under natural physiological conditions.

One advantage of this is that only a very small injection hole is required to place the lens material in the bag, thus avoiding the common surgical technique of cutting a slit to insert a replacement lens. Fetsch says the hole would be small enough that stitches would not be required after the lens material is placed in the capsular bag.

Fetsch is hopeful that animal testing can begin in one year. But first, the researchers have to improve the materials’ refractive index — the degree at which it refracts light, which is key to how well you can focus with the material.

"Right now, in this particular system, that’s a little low," Fetsch admits. "It’s not good enough to be able to see more than blurry. But it’s something we think we can bring up with just simple modifications." Other scientists have been successful in improving the refractive index in similar soft gels, according to the researchers.

The material the research group is using to form the reversible bonds — acrylamide — is a known neurotoxin, but Fetsch doesn’t think that will be a problem because the acrylamide is polymerized.

"It sounds ludicrous to put [acrylamide] in the body, but the idea is that polyacrylamide when it’s in long chains is not toxic to the body as far as we know," Fetsch says. Additionally, before injection, thorough washing of the material would get rid of any traces of acrylamide, she adds.

The polymerization process also can be used for other biocompatible acrylamide derivatives, the researchers say.

While acknowledging that there is still a lot of work left before an injectable lens could become a reality, Fetsch has an idea of how the material might be introduced.

"Assuming that we made it all the way to human studies, we probably would first offer it to cataract patients because by that time they almost certainly have presbyopia and they’re looking at a similar surgery anyway." After that, Fetsch says, it could be offered to people with presbyopia who otherwise have healthy vision but don’t want to wear glasses or contacts.

The Veteran’s Administration Merit Review Grant provided funding support for the research.


The poster on this research, PMSE 317, will be presented at 8:00 p.m., Monday, Sept. 8, at the Javits Convention Center, North Pavilion, during Sci-Mix, and at 5:30 p.m., Tuesday, Sept. 9, at the Hilton New York, Rhinelander Center, during a joint PMSE/POLY poster session.

Madalene D. Fetsch is a graduate assistant in the Department of Biomedical Engineering at Washington University’s School of Engineering and Applied Science in St. Louis, Mo.

V. Nathan Ravi, M.D., Ph.D., is an associate professor of ophthalmology and visual sciences at Washington University’s School of Medicine and professor of chemical engineering at Washington University in St. Louis, Mo., and the director of ophthalmology for VA Heartland hospitals in the Midwest.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org/

More articles from Health and Medicine:

nachricht The end of pneumonia? New vaccine offers hope
23.10.2017 | University at Buffalo

nachricht Scientists track ovarian cancers to site of origin: Fallopian tubes
23.10.2017 | Johns Hopkins Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Shrews shrink in winter and regrow in spring

24.10.2017 | Life Sciences

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>