Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lens replacement material holds prospect of ’young’ eyes for people over 40

09.09.2003


A gel-like material being developed by scientists at the VA Hospital and Washington University in St. Louis could eventually mean the end of bifocals and contacts for millions of middle age and older people who suffer from presbyopia — literally "old vision." The material, which could be used to replace old hardened lenses in patients, including those with cataracts, was described today at the 226th national meeting of the American Chemical Society, the world’s largest scientific society.



While not a life-threatening condition, presbyopia affects nearly everyone over the age of about 40 or 45. As people age, according to one theory, the lenses in their eyes slowly harden making it more and more difficult to focus on nearby objects. The current solution for most people is reading glasses or contacts. Even people who undergo corrective laser surgery often still need glasses for reading and up close focusing.

"Our idea is that if we can remove the lens and put in a material that is soft, like a young healthy lens is at age 20, then they would have their accommodative ability restored," says researcher Madalene Fetsch. "They would be able to focus on near and far objects."


Fetsch, a graduate assistant in Washington University’s department of biomedical engineering, is working under the mentorship of Dr. Nathan Ravi, M.D., Ph.D., principal investigator in the development of the replacement lens material. He is an associate professor of ophthalmology and professor of chemical engineering at the school. He also is director of ophthalmology for VA Heartland hospitals in the Midwest.

The material, which is currently in lab testing, is a hydrophobically modified hydrogel. Hydrogels are used in many extended wear contact lenses.

"The gels can be made soft to the touch and have viscoelastic properties similar to that of the natural human lens," according to Fetsch. "At the same time, our material so far looks like it has the potential to be injectable, which means less invasive surgery."

Other research groups are also working on replacement lens materials, but Fetsch believes her material is different in several ways. One significant difference, she says, is reversible disulfide bonds. "This means that after forming the gel, we can reduce the bonds, liquefying the gel again so that it can be injected into the lens capsular bag." Once in the bag, the material reforms to a gel under natural physiological conditions.

One advantage of this is that only a very small injection hole is required to place the lens material in the bag, thus avoiding the common surgical technique of cutting a slit to insert a replacement lens. Fetsch says the hole would be small enough that stitches would not be required after the lens material is placed in the capsular bag.

Fetsch is hopeful that animal testing can begin in one year. But first, the researchers have to improve the materials’ refractive index — the degree at which it refracts light, which is key to how well you can focus with the material.

"Right now, in this particular system, that’s a little low," Fetsch admits. "It’s not good enough to be able to see more than blurry. But it’s something we think we can bring up with just simple modifications." Other scientists have been successful in improving the refractive index in similar soft gels, according to the researchers.

The material the research group is using to form the reversible bonds — acrylamide — is a known neurotoxin, but Fetsch doesn’t think that will be a problem because the acrylamide is polymerized.

"It sounds ludicrous to put [acrylamide] in the body, but the idea is that polyacrylamide when it’s in long chains is not toxic to the body as far as we know," Fetsch says. Additionally, before injection, thorough washing of the material would get rid of any traces of acrylamide, she adds.

The polymerization process also can be used for other biocompatible acrylamide derivatives, the researchers say.

While acknowledging that there is still a lot of work left before an injectable lens could become a reality, Fetsch has an idea of how the material might be introduced.

"Assuming that we made it all the way to human studies, we probably would first offer it to cataract patients because by that time they almost certainly have presbyopia and they’re looking at a similar surgery anyway." After that, Fetsch says, it could be offered to people with presbyopia who otherwise have healthy vision but don’t want to wear glasses or contacts.

The Veteran’s Administration Merit Review Grant provided funding support for the research.


The poster on this research, PMSE 317, will be presented at 8:00 p.m., Monday, Sept. 8, at the Javits Convention Center, North Pavilion, during Sci-Mix, and at 5:30 p.m., Tuesday, Sept. 9, at the Hilton New York, Rhinelander Center, during a joint PMSE/POLY poster session.

Madalene D. Fetsch is a graduate assistant in the Department of Biomedical Engineering at Washington University’s School of Engineering and Applied Science in St. Louis, Mo.

V. Nathan Ravi, M.D., Ph.D., is an associate professor of ophthalmology and visual sciences at Washington University’s School of Medicine and professor of chemical engineering at Washington University in St. Louis, Mo., and the director of ophthalmology for VA Heartland hospitals in the Midwest.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org/

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>