Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Researchers ID Peptides That Bind to Alzheimer’s Plaques

09.09.2003


Two short protein segments, called peptides, have been identified by researchers at the University of California, San Diego (UCSD) School of Medicine, for their ability to recognize and bind to beta-amyloid-containing plaques that accumulate abnormally in the brains of Alzheimer’s disease patients, providing a possible “Trojan horse” mechanism to diagnose and treat the disorder.


Paul T. Martin, Ph.D.



“These peptide sequences are potential new tools for the delivery of medication to the amyloid plaques that are found in Alzheimer’s disease, or for new diagnostic tests that would allow early identification and treatment of the disease,” said the study’s senior author, Paul T. Martin, Ph.D., UCSD assistant professor of neurosciences.

In studies published in the September issue of the journal Neurobiology of Disease (published online Aug. 27, 2003), Martin and colleagues found that natural and synthetic versions of the peptides attach themselves to the abnormal plaque, while ignoring normal brain tissue.


Although past research has identified larger non-antibody and antibody proteins and small organic molecules that can bind to the amyloid plaques, the UCSD team said the newly discovered peptides may be a better choice for diagnosis and treatment. Smaller in size than previously identified proteins, the peptides may more easily cross the blood-brain barrier. In addition, some of the previously identified organic molecules could cause toxic side effects if given to people.

The scientists used a laboratory technique called phage peptide display to identify the two peptide sequences from a starting library of 50 million peptide sequences. These peptides were engineered to be exposed on the surface of bacteria by infecting the bacteria with bacteriophage (a bacterial virus). The peptide-expressing bacteria were then used to select for peptide sequences that bound amyloid plaques. An analysis of the bacteriophage showed that only the two peptides were able to seek out and bind to abnormal beta-amyloid.

“It is striking that we found only two peptide sequences, and that they were very similar in structure to one another,” Martin said. “This suggests that if other sequences do exist, they would most likely be variations on the structures we have already identified.”

He added that the UCSD team sees several potential applications for the peptides. First, they could be coupled to molecules designed to inhibit the toxicity of beta-amyloid plaques. The peptides might also be coupled to substances that stimulate the breakdown of plaques, or inhibit them from forming. A final application would be coupling the peptides to other markers that would highlight the abnormal plaque in imaging diagnostic tests. Currently, Alzheimer’s disease is diagnosed by cognitive tests involving patient interview, and a conclusive diagnosis requires postmortem analysis of the brain itself.

In addition to Martin, authors of the study included Christine Kang, staff research associate, and Vianney Jayasinha, an undergraduate student, in the UCSD Department of Neurosciences. The study was funded by the National Institutes of Health.

Contact:
Sue Pondrom
(619) 543-6163
spondrom@ucsd.edu

Sue Pondrom | UCSD
Further information:
http://health.ucsd.edu/news/2003/09_08_Martin.html
http://health.ucsd.edu/news/2002/04_15_Martin.html

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>