Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Researchers ID Peptides That Bind to Alzheimer’s Plaques

09.09.2003


Two short protein segments, called peptides, have been identified by researchers at the University of California, San Diego (UCSD) School of Medicine, for their ability to recognize and bind to beta-amyloid-containing plaques that accumulate abnormally in the brains of Alzheimer’s disease patients, providing a possible “Trojan horse” mechanism to diagnose and treat the disorder.


Paul T. Martin, Ph.D.



“These peptide sequences are potential new tools for the delivery of medication to the amyloid plaques that are found in Alzheimer’s disease, or for new diagnostic tests that would allow early identification and treatment of the disease,” said the study’s senior author, Paul T. Martin, Ph.D., UCSD assistant professor of neurosciences.

In studies published in the September issue of the journal Neurobiology of Disease (published online Aug. 27, 2003), Martin and colleagues found that natural and synthetic versions of the peptides attach themselves to the abnormal plaque, while ignoring normal brain tissue.


Although past research has identified larger non-antibody and antibody proteins and small organic molecules that can bind to the amyloid plaques, the UCSD team said the newly discovered peptides may be a better choice for diagnosis and treatment. Smaller in size than previously identified proteins, the peptides may more easily cross the blood-brain barrier. In addition, some of the previously identified organic molecules could cause toxic side effects if given to people.

The scientists used a laboratory technique called phage peptide display to identify the two peptide sequences from a starting library of 50 million peptide sequences. These peptides were engineered to be exposed on the surface of bacteria by infecting the bacteria with bacteriophage (a bacterial virus). The peptide-expressing bacteria were then used to select for peptide sequences that bound amyloid plaques. An analysis of the bacteriophage showed that only the two peptides were able to seek out and bind to abnormal beta-amyloid.

“It is striking that we found only two peptide sequences, and that they were very similar in structure to one another,” Martin said. “This suggests that if other sequences do exist, they would most likely be variations on the structures we have already identified.”

He added that the UCSD team sees several potential applications for the peptides. First, they could be coupled to molecules designed to inhibit the toxicity of beta-amyloid plaques. The peptides might also be coupled to substances that stimulate the breakdown of plaques, or inhibit them from forming. A final application would be coupling the peptides to other markers that would highlight the abnormal plaque in imaging diagnostic tests. Currently, Alzheimer’s disease is diagnosed by cognitive tests involving patient interview, and a conclusive diagnosis requires postmortem analysis of the brain itself.

In addition to Martin, authors of the study included Christine Kang, staff research associate, and Vianney Jayasinha, an undergraduate student, in the UCSD Department of Neurosciences. The study was funded by the National Institutes of Health.

Contact:
Sue Pondrom
(619) 543-6163
spondrom@ucsd.edu

Sue Pondrom | UCSD
Further information:
http://health.ucsd.edu/news/2003/09_08_Martin.html
http://health.ucsd.edu/news/2002/04_15_Martin.html

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>