Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Researchers ID Peptides That Bind to Alzheimer’s Plaques

09.09.2003


Two short protein segments, called peptides, have been identified by researchers at the University of California, San Diego (UCSD) School of Medicine, for their ability to recognize and bind to beta-amyloid-containing plaques that accumulate abnormally in the brains of Alzheimer’s disease patients, providing a possible “Trojan horse” mechanism to diagnose and treat the disorder.


Paul T. Martin, Ph.D.



“These peptide sequences are potential new tools for the delivery of medication to the amyloid plaques that are found in Alzheimer’s disease, or for new diagnostic tests that would allow early identification and treatment of the disease,” said the study’s senior author, Paul T. Martin, Ph.D., UCSD assistant professor of neurosciences.

In studies published in the September issue of the journal Neurobiology of Disease (published online Aug. 27, 2003), Martin and colleagues found that natural and synthetic versions of the peptides attach themselves to the abnormal plaque, while ignoring normal brain tissue.


Although past research has identified larger non-antibody and antibody proteins and small organic molecules that can bind to the amyloid plaques, the UCSD team said the newly discovered peptides may be a better choice for diagnosis and treatment. Smaller in size than previously identified proteins, the peptides may more easily cross the blood-brain barrier. In addition, some of the previously identified organic molecules could cause toxic side effects if given to people.

The scientists used a laboratory technique called phage peptide display to identify the two peptide sequences from a starting library of 50 million peptide sequences. These peptides were engineered to be exposed on the surface of bacteria by infecting the bacteria with bacteriophage (a bacterial virus). The peptide-expressing bacteria were then used to select for peptide sequences that bound amyloid plaques. An analysis of the bacteriophage showed that only the two peptides were able to seek out and bind to abnormal beta-amyloid.

“It is striking that we found only two peptide sequences, and that they were very similar in structure to one another,” Martin said. “This suggests that if other sequences do exist, they would most likely be variations on the structures we have already identified.”

He added that the UCSD team sees several potential applications for the peptides. First, they could be coupled to molecules designed to inhibit the toxicity of beta-amyloid plaques. The peptides might also be coupled to substances that stimulate the breakdown of plaques, or inhibit them from forming. A final application would be coupling the peptides to other markers that would highlight the abnormal plaque in imaging diagnostic tests. Currently, Alzheimer’s disease is diagnosed by cognitive tests involving patient interview, and a conclusive diagnosis requires postmortem analysis of the brain itself.

In addition to Martin, authors of the study included Christine Kang, staff research associate, and Vianney Jayasinha, an undergraduate student, in the UCSD Department of Neurosciences. The study was funded by the National Institutes of Health.

Contact:
Sue Pondrom
(619) 543-6163
spondrom@ucsd.edu

Sue Pondrom | UCSD
Further information:
http://health.ucsd.edu/news/2003/09_08_Martin.html
http://health.ucsd.edu/news/2002/04_15_Martin.html

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>