Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells’ Ability to Live Without Oxygen Give Clues for Treating Major Diseases

08.09.2003


Some cells in the kidney can not only survive without sufficient oxygen, but actually begin stretching and multiplying to make up for their fallen brethren, says a Medical College of Georgia researcher.




Some cancer cells similarly adapt; as a tumor grows too big for its blood and oxygen supply, some cells transform so they can survive without oxygen, emerging stronger and treatment resistant, says Dr. Zheng Dong, cell biologist.

He doubts that these two very different cell types travel the identical road to survival. “But the final result is the same,” he says. “They simply become stronger, tougher and more resistant to injury, and for those in tumors, more resistant to cancer therapies.”


The researcher, whose latest findings are featured in recent issues of the Journal of Biological Chemistry and American Journal of Pathology, is tracing the steps each takes, ultimately to see whether cells that would be lost to stroke and heart attack can be made equally durable -- and, possibly, whether cancer cells can be made vulnerable.

“We want to define the signaling pathways for cell injury and death. We want to know how these cells are killed,” he says. “Our other focus is cellular adaptation to stress, basically why other cells can survive. We want to define the molecular alterations at the level of gene expression,” which he believes are key to survival and proliferation.

He has found at least two key pieces to survival in the tubular cells of the kidney. Tubular cells are the most common cells in the kidney, comprising the extensive channels through which body’s entire fluid volume flows many times each day so that needed substances can be absorbed and excess fluid and waste excreted in the urine. The cells are durable, busy and, likely because of their high activity, have a high oxygen demand.

Yet when the oxygen supply is lost or diminished, as it can be in cardiovascular disease and diabetes, Dr. Dong has found that some tubular cells seem to adapt by up-regulating two genes, IAP-2 and Bcl-xL. When he knocks down the genes, the cell’s sensitivity to injury returns.

“This response, I believe, provides a mechanism for those cells to survive ischemic stress and gives them a chance to repair the injured kidney,” says Dr. Dong, whose discovery of the role of these death-inhibitory genes has won him numerous awards in the past three years including the Lyndon Baines Johnson Research Award from the American Heart Association, Texas Affiliate; the Patricia W. Robinson Young Investigator Award from the National Kidney Foundation; and the Carl W. Gottschalk Scholar Award from the American Society of Nephrology.

His latest finding helps explain why other cells are lost, detailing how in an oxygen-deprived state, a little-understood protein called Bax found in the fluid portion of a cell moves into the cell’s powerhouse, or mitochondria, where it forms holes in the walls. Contained, the contents of the mitochondria give the cell energy; uncontained, they cause cell death, or apoptosis.

“We are focusing on the kidney, but our studies are applicable to heart attack and stroke and possibly cancer as well,” says Dr. Dong, who believes his work will ultimately lead to gene therapy where the survival genes could be up-regulated in troubled cells and down-regulated in cells, such as cancer cells, that need to die.

“Why are some cells so durable and others so vulnerable?” he says. “Hopefully we can identify some therapeutic tool that is either genetic or pharmaceutical to switch these as needed. We want to keep kidney cells strong enough to be resistant to ischemia and hopefully we can identify a few more things in cancer cells that make them more vulnerable.”

Dr. Dong’s work is supported by the National Institutes of Health, the American Society of Nephrology and the National Kidney Foundation.

Toni Baker | Medical College of Georgia
Further information:
http://www.mcg.edu/news/2003NewsRel/dong.html

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>