Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells’ Ability to Live Without Oxygen Give Clues for Treating Major Diseases

08.09.2003


Some cells in the kidney can not only survive without sufficient oxygen, but actually begin stretching and multiplying to make up for their fallen brethren, says a Medical College of Georgia researcher.




Some cancer cells similarly adapt; as a tumor grows too big for its blood and oxygen supply, some cells transform so they can survive without oxygen, emerging stronger and treatment resistant, says Dr. Zheng Dong, cell biologist.

He doubts that these two very different cell types travel the identical road to survival. “But the final result is the same,” he says. “They simply become stronger, tougher and more resistant to injury, and for those in tumors, more resistant to cancer therapies.”


The researcher, whose latest findings are featured in recent issues of the Journal of Biological Chemistry and American Journal of Pathology, is tracing the steps each takes, ultimately to see whether cells that would be lost to stroke and heart attack can be made equally durable -- and, possibly, whether cancer cells can be made vulnerable.

“We want to define the signaling pathways for cell injury and death. We want to know how these cells are killed,” he says. “Our other focus is cellular adaptation to stress, basically why other cells can survive. We want to define the molecular alterations at the level of gene expression,” which he believes are key to survival and proliferation.

He has found at least two key pieces to survival in the tubular cells of the kidney. Tubular cells are the most common cells in the kidney, comprising the extensive channels through which body’s entire fluid volume flows many times each day so that needed substances can be absorbed and excess fluid and waste excreted in the urine. The cells are durable, busy and, likely because of their high activity, have a high oxygen demand.

Yet when the oxygen supply is lost or diminished, as it can be in cardiovascular disease and diabetes, Dr. Dong has found that some tubular cells seem to adapt by up-regulating two genes, IAP-2 and Bcl-xL. When he knocks down the genes, the cell’s sensitivity to injury returns.

“This response, I believe, provides a mechanism for those cells to survive ischemic stress and gives them a chance to repair the injured kidney,” says Dr. Dong, whose discovery of the role of these death-inhibitory genes has won him numerous awards in the past three years including the Lyndon Baines Johnson Research Award from the American Heart Association, Texas Affiliate; the Patricia W. Robinson Young Investigator Award from the National Kidney Foundation; and the Carl W. Gottschalk Scholar Award from the American Society of Nephrology.

His latest finding helps explain why other cells are lost, detailing how in an oxygen-deprived state, a little-understood protein called Bax found in the fluid portion of a cell moves into the cell’s powerhouse, or mitochondria, where it forms holes in the walls. Contained, the contents of the mitochondria give the cell energy; uncontained, they cause cell death, or apoptosis.

“We are focusing on the kidney, but our studies are applicable to heart attack and stroke and possibly cancer as well,” says Dr. Dong, who believes his work will ultimately lead to gene therapy where the survival genes could be up-regulated in troubled cells and down-regulated in cells, such as cancer cells, that need to die.

“Why are some cells so durable and others so vulnerable?” he says. “Hopefully we can identify some therapeutic tool that is either genetic or pharmaceutical to switch these as needed. We want to keep kidney cells strong enough to be resistant to ischemia and hopefully we can identify a few more things in cancer cells that make them more vulnerable.”

Dr. Dong’s work is supported by the National Institutes of Health, the American Society of Nephrology and the National Kidney Foundation.

Toni Baker | Medical College of Georgia
Further information:
http://www.mcg.edu/news/2003NewsRel/dong.html

More articles from Health and Medicine:

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

nachricht Study advances gene therapy for glaucoma
17.01.2018 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Morbid Obesity: Gastric Bypass and Sleeve Gastrectomy Are Comparable

17.01.2018 | Health and Medicine

Researchers identify new way to unmask melanoma cells to the immune system

17.01.2018 | Health and Medicine

Genetic discovery may help better identify children at risk for type 1 diabetes

17.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>