Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sick Kids scientists identify gene for most severe form of adolescent epilepsy

08.09.2003


An international research team led by Drs. Berge Minassian and Stephen Scherer of The Hospital for Sick Children (HSC) and the University of Toronto (U of T) has identified a gene responsible for the most severe form of teenage-onset epilepsy, known as Lafora disease (LD). The discovery is reported in the September issue of the scientific journal Nature Genetics.



"Epilepsy is one of the most common neurological disorders affecting over 40 million people worldwide," said Dr. Berge Minassian, one of the study’s senior authors, an HSC neurologist and scientist, and an assistant professor in the Department of Paediatrics at U of T. "Lafora disease is one form of epilepsy that occurs during early adolescence and is characterized by seizures and progressive neurological degeneration. Death usually occurs within a decade of the first symptoms."

Fifty years of investigation led doctors to suspect that Lafora disease was caused by problems with carbohydrate metabolism in the brain. Beyond this, however, the fundamental defect triggering the malfunction was unknown. In 1998, the HSC team identified the first gene implicated in Lafora disease, called EPM2A.


"While the discovery of the EPM2A gene has led to the development of diagnostics and a better understanding of the fundamental defect causing seizures, it explained the underlying problem for only 50 per cent of LD families," said Dr. Stephen Scherer, the other senior author of the study, an HSC senior scientist, and an associate professor in the Department of Molecular and Medical Genetics at U of T.

"The newly discovered LD gene, named NHLRC1, produces a protein thought to be involved in marking other proteins for destruction in the cell. Our early data suggests that the EPM2A and NHLRC1 genes work together to safeguard neurons against accumulating too many carbohydrates. If either of the genes is missing, the result is epilepsy," added Dr. Scherer. "Importantly, we can now explain Lafora disease in 90 per cent of families, and for the remaining 10 per cent, we think there is a third yet-to-be-identified disease gene."

Technology in the DNA sequencing facility in The Centre for Applied Genomics at HSC allowed the research team to complete the necessary sequencing of patient and family samples more quickly than with earlier studies.

"Our discovery opens a new area of research into not only epilepsy, but also normal brain function. Ultimately, we hope that understanding the basic genetic defect will allow us to discover the basic mechanisms that underlie the severe epilepsy in this disorder, but also to possibly correct the disease by therapeutic treatment," said Elayne Chan, the study’s lead author and a University of Toronto graduate student. Chan is a recipient of an Epilepsy Canada/Canadian Institutes of Health Research doctoral research award.


This research was supported by the Canadian Institutes of Health Research, the Canadian Genetic Diseases Network, Genome Canada through the Ontario Genomics Institute, the Canada Foundation for Innovation, the Ontario Innovation Trust, The Centre for Applied Genomics at The Hospital for Sick Children, and The Hospital for Sick Children Foundation. Dr. Scherer is an Investigator of the Canadian Institutes of Health Research and International Scholar of the Howard Hughes Medical Institute.

The Hospital for Sick Children, affiliated with the University of Toronto, is Canada’s most research-intensive hospital and the largest centre dedicated to improving children’s health in the country. Its mission is to provide the best in family-centred, compassionate care, to lead in scientific and clinical advancement, and to prepare the next generation of leaders in child health. For more information, please visit www.sickkids.ca.




Laura Greer | EurekAlert!
Further information:
http://www.sickkids.ca
http://www.utoronto.ca/

More articles from Health and Medicine:

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>