Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sick Kids scientists identify gene for most severe form of adolescent epilepsy

08.09.2003


An international research team led by Drs. Berge Minassian and Stephen Scherer of The Hospital for Sick Children (HSC) and the University of Toronto (U of T) has identified a gene responsible for the most severe form of teenage-onset epilepsy, known as Lafora disease (LD). The discovery is reported in the September issue of the scientific journal Nature Genetics.



"Epilepsy is one of the most common neurological disorders affecting over 40 million people worldwide," said Dr. Berge Minassian, one of the study’s senior authors, an HSC neurologist and scientist, and an assistant professor in the Department of Paediatrics at U of T. "Lafora disease is one form of epilepsy that occurs during early adolescence and is characterized by seizures and progressive neurological degeneration. Death usually occurs within a decade of the first symptoms."

Fifty years of investigation led doctors to suspect that Lafora disease was caused by problems with carbohydrate metabolism in the brain. Beyond this, however, the fundamental defect triggering the malfunction was unknown. In 1998, the HSC team identified the first gene implicated in Lafora disease, called EPM2A.


"While the discovery of the EPM2A gene has led to the development of diagnostics and a better understanding of the fundamental defect causing seizures, it explained the underlying problem for only 50 per cent of LD families," said Dr. Stephen Scherer, the other senior author of the study, an HSC senior scientist, and an associate professor in the Department of Molecular and Medical Genetics at U of T.

"The newly discovered LD gene, named NHLRC1, produces a protein thought to be involved in marking other proteins for destruction in the cell. Our early data suggests that the EPM2A and NHLRC1 genes work together to safeguard neurons against accumulating too many carbohydrates. If either of the genes is missing, the result is epilepsy," added Dr. Scherer. "Importantly, we can now explain Lafora disease in 90 per cent of families, and for the remaining 10 per cent, we think there is a third yet-to-be-identified disease gene."

Technology in the DNA sequencing facility in The Centre for Applied Genomics at HSC allowed the research team to complete the necessary sequencing of patient and family samples more quickly than with earlier studies.

"Our discovery opens a new area of research into not only epilepsy, but also normal brain function. Ultimately, we hope that understanding the basic genetic defect will allow us to discover the basic mechanisms that underlie the severe epilepsy in this disorder, but also to possibly correct the disease by therapeutic treatment," said Elayne Chan, the study’s lead author and a University of Toronto graduate student. Chan is a recipient of an Epilepsy Canada/Canadian Institutes of Health Research doctoral research award.


This research was supported by the Canadian Institutes of Health Research, the Canadian Genetic Diseases Network, Genome Canada through the Ontario Genomics Institute, the Canada Foundation for Innovation, the Ontario Innovation Trust, The Centre for Applied Genomics at The Hospital for Sick Children, and The Hospital for Sick Children Foundation. Dr. Scherer is an Investigator of the Canadian Institutes of Health Research and International Scholar of the Howard Hughes Medical Institute.

The Hospital for Sick Children, affiliated with the University of Toronto, is Canada’s most research-intensive hospital and the largest centre dedicated to improving children’s health in the country. Its mission is to provide the best in family-centred, compassionate care, to lead in scientific and clinical advancement, and to prepare the next generation of leaders in child health. For more information, please visit www.sickkids.ca.




Laura Greer | EurekAlert!
Further information:
http://www.sickkids.ca
http://www.utoronto.ca/

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>