Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sick Kids scientists identify gene for most severe form of adolescent epilepsy

08.09.2003


An international research team led by Drs. Berge Minassian and Stephen Scherer of The Hospital for Sick Children (HSC) and the University of Toronto (U of T) has identified a gene responsible for the most severe form of teenage-onset epilepsy, known as Lafora disease (LD). The discovery is reported in the September issue of the scientific journal Nature Genetics.



"Epilepsy is one of the most common neurological disorders affecting over 40 million people worldwide," said Dr. Berge Minassian, one of the study’s senior authors, an HSC neurologist and scientist, and an assistant professor in the Department of Paediatrics at U of T. "Lafora disease is one form of epilepsy that occurs during early adolescence and is characterized by seizures and progressive neurological degeneration. Death usually occurs within a decade of the first symptoms."

Fifty years of investigation led doctors to suspect that Lafora disease was caused by problems with carbohydrate metabolism in the brain. Beyond this, however, the fundamental defect triggering the malfunction was unknown. In 1998, the HSC team identified the first gene implicated in Lafora disease, called EPM2A.


"While the discovery of the EPM2A gene has led to the development of diagnostics and a better understanding of the fundamental defect causing seizures, it explained the underlying problem for only 50 per cent of LD families," said Dr. Stephen Scherer, the other senior author of the study, an HSC senior scientist, and an associate professor in the Department of Molecular and Medical Genetics at U of T.

"The newly discovered LD gene, named NHLRC1, produces a protein thought to be involved in marking other proteins for destruction in the cell. Our early data suggests that the EPM2A and NHLRC1 genes work together to safeguard neurons against accumulating too many carbohydrates. If either of the genes is missing, the result is epilepsy," added Dr. Scherer. "Importantly, we can now explain Lafora disease in 90 per cent of families, and for the remaining 10 per cent, we think there is a third yet-to-be-identified disease gene."

Technology in the DNA sequencing facility in The Centre for Applied Genomics at HSC allowed the research team to complete the necessary sequencing of patient and family samples more quickly than with earlier studies.

"Our discovery opens a new area of research into not only epilepsy, but also normal brain function. Ultimately, we hope that understanding the basic genetic defect will allow us to discover the basic mechanisms that underlie the severe epilepsy in this disorder, but also to possibly correct the disease by therapeutic treatment," said Elayne Chan, the study’s lead author and a University of Toronto graduate student. Chan is a recipient of an Epilepsy Canada/Canadian Institutes of Health Research doctoral research award.


This research was supported by the Canadian Institutes of Health Research, the Canadian Genetic Diseases Network, Genome Canada through the Ontario Genomics Institute, the Canada Foundation for Innovation, the Ontario Innovation Trust, The Centre for Applied Genomics at The Hospital for Sick Children, and The Hospital for Sick Children Foundation. Dr. Scherer is an Investigator of the Canadian Institutes of Health Research and International Scholar of the Howard Hughes Medical Institute.

The Hospital for Sick Children, affiliated with the University of Toronto, is Canada’s most research-intensive hospital and the largest centre dedicated to improving children’s health in the country. Its mission is to provide the best in family-centred, compassionate care, to lead in scientific and clinical advancement, and to prepare the next generation of leaders in child health. For more information, please visit www.sickkids.ca.




Laura Greer | EurekAlert!
Further information:
http://www.sickkids.ca
http://www.utoronto.ca/

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>