Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New "Gating" Device Improves Imaging of Heart and Lungs

08.09.2003


Magnetic resonance imaging (MRI) of the heart and lungs is a valuable diagnostic tool in the medical industry, but the detailed images it produces are often marred by artefacts (unwanted signals) created by the motion of cardiac and respiratory cycles.



A team of inventors at Oxford University has now developed a method of suppressing MRI artefacts to a negligible level. This has potential to allow more precise conclusions to be made from a small number of experimental trials, with obvious potential within the pharmaceutical industry, both to accelerate research work and to improve the robustness and quality of screening data upon which key project decisions can be made.

Cardiac and thoracic MRI of small animals, such as mice, requires high spatial resolution in order to resolve fine detail. However, MRI is extremely sensitive to motion from the cardiac and respiratory cycles, which cause severe image artefacts. To reduce these artefacts, synchronisation (gating) to these physiological cycles is required.


Successful gating itself, however, can be difficult to achieve:
· Severe interference from the MR gradient system can cause problems in obtaining clean physiological signals from which gating information is derived.
· Once gating information has been derived, a suitable intra-respiratory acquisition window has to be defined which allows ECGs within the window to be used for MRI signal acquisition.
· Physiological rates of small animals can vary due to changes in thermal or pharmacological response; these variations can invalidate the defined acquisition window, hence introducing motion artefacts.
· Unfortunately, using double-gating (i.e. cardiac and respiratory gating) creates another form of image artefact that has to be minimised.

To overcome these problems, the Oxford team has designed a cardiac and respiratory gating device that is immune from gradient system interference, is adaptive and flexible to changes in physiological rates, and minimises relaxation effects. The inventors have developed a prototype of the device that is capable of minimising image artefacts so that the resultant images are clearer, and therefore significantly better for identification purposes than those obtained using existing methods.

Isis Innovation, Oxford University’s technology transfer company, has filed a patent application on the gating device and is actively looking for companies interested in utilising it.

Jennifer Johnson | alfa
Further information:
http://www.isis-innovation.com/licensing/1275.html

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>