Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New "Gating" Device Improves Imaging of Heart and Lungs

08.09.2003


Magnetic resonance imaging (MRI) of the heart and lungs is a valuable diagnostic tool in the medical industry, but the detailed images it produces are often marred by artefacts (unwanted signals) created by the motion of cardiac and respiratory cycles.



A team of inventors at Oxford University has now developed a method of suppressing MRI artefacts to a negligible level. This has potential to allow more precise conclusions to be made from a small number of experimental trials, with obvious potential within the pharmaceutical industry, both to accelerate research work and to improve the robustness and quality of screening data upon which key project decisions can be made.

Cardiac and thoracic MRI of small animals, such as mice, requires high spatial resolution in order to resolve fine detail. However, MRI is extremely sensitive to motion from the cardiac and respiratory cycles, which cause severe image artefacts. To reduce these artefacts, synchronisation (gating) to these physiological cycles is required.


Successful gating itself, however, can be difficult to achieve:
· Severe interference from the MR gradient system can cause problems in obtaining clean physiological signals from which gating information is derived.
· Once gating information has been derived, a suitable intra-respiratory acquisition window has to be defined which allows ECGs within the window to be used for MRI signal acquisition.
· Physiological rates of small animals can vary due to changes in thermal or pharmacological response; these variations can invalidate the defined acquisition window, hence introducing motion artefacts.
· Unfortunately, using double-gating (i.e. cardiac and respiratory gating) creates another form of image artefact that has to be minimised.

To overcome these problems, the Oxford team has designed a cardiac and respiratory gating device that is immune from gradient system interference, is adaptive and flexible to changes in physiological rates, and minimises relaxation effects. The inventors have developed a prototype of the device that is capable of minimising image artefacts so that the resultant images are clearer, and therefore significantly better for identification purposes than those obtained using existing methods.

Isis Innovation, Oxford University’s technology transfer company, has filed a patent application on the gating device and is actively looking for companies interested in utilising it.

Jennifer Johnson | alfa
Further information:
http://www.isis-innovation.com/licensing/1275.html

More articles from Health and Medicine:

nachricht 'Icebreaker' protein opens genome for t cell development, Penn researchers find
21.02.2018 | University of Pennsylvania School of Medicine

nachricht Similarities found in cancer initiation in kidney, liver, stomach, pancreas
21.02.2018 | Washington University School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>