Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New "Gating" Device Improves Imaging of Heart and Lungs


Magnetic resonance imaging (MRI) of the heart and lungs is a valuable diagnostic tool in the medical industry, but the detailed images it produces are often marred by artefacts (unwanted signals) created by the motion of cardiac and respiratory cycles.

A team of inventors at Oxford University has now developed a method of suppressing MRI artefacts to a negligible level. This has potential to allow more precise conclusions to be made from a small number of experimental trials, with obvious potential within the pharmaceutical industry, both to accelerate research work and to improve the robustness and quality of screening data upon which key project decisions can be made.

Cardiac and thoracic MRI of small animals, such as mice, requires high spatial resolution in order to resolve fine detail. However, MRI is extremely sensitive to motion from the cardiac and respiratory cycles, which cause severe image artefacts. To reduce these artefacts, synchronisation (gating) to these physiological cycles is required.

Successful gating itself, however, can be difficult to achieve:
· Severe interference from the MR gradient system can cause problems in obtaining clean physiological signals from which gating information is derived.
· Once gating information has been derived, a suitable intra-respiratory acquisition window has to be defined which allows ECGs within the window to be used for MRI signal acquisition.
· Physiological rates of small animals can vary due to changes in thermal or pharmacological response; these variations can invalidate the defined acquisition window, hence introducing motion artefacts.
· Unfortunately, using double-gating (i.e. cardiac and respiratory gating) creates another form of image artefact that has to be minimised.

To overcome these problems, the Oxford team has designed a cardiac and respiratory gating device that is immune from gradient system interference, is adaptive and flexible to changes in physiological rates, and minimises relaxation effects. The inventors have developed a prototype of the device that is capable of minimising image artefacts so that the resultant images are clearer, and therefore significantly better for identification purposes than those obtained using existing methods.

Isis Innovation, Oxford University’s technology transfer company, has filed a patent application on the gating device and is actively looking for companies interested in utilising it.

Jennifer Johnson | alfa
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>