Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study at TSRI links dozens of proteins to several rare muscle and nerve degeneration diseases

05.09.2003


A team of scientists at The Scripps Research Institute (TSRI) has identified more than 50 previously unknown proteins and associates several of them with rare human muscle and nerve degeneration diseases. The team is publishing their findings this week in the journal Science.



Led by TSRI Professors Larry Gerace and John R. Yates III, the team used a technique called subtractive proteomics to identify 62 new proteins in the inner nuclear membrane of the human cell. The team demonstrated that 23 of these proteins are linked with strong probability to 14 rare muscle-wasting diseases such as congenital muscular dystrophy, Limb-Girdle muscular dystrophy, and spinal muscular atrophy, and several forms of the neurodegenerative Charcot-Marie-Tooth disease.

Knowing the proteins that may cause or contribute to these diseases is a first step in the long process of looking for ways to detect, prevent, or treat them.


This study has the potential to clarify a significant number of the more than 300 human dystrophies for which a causative gene has not been identified.

"To understand how these diseases happen, we need to understand more about the players--the network of interlinked proteins," says Gerace.

Muscular Dystrophies and the Nuclear Membrane

Many rare but devastating diseases have been linked to the inner nuclear membrane, which lines the nuclear envelope compartmentalizing the cell’s genetic material or DNA. On the inner surface of the membrane is a structure referred to as the lamina. The lamina is important for maintaining the shape and size of the nucleus. It also contributes to the specialized functions of different human cells, for example, enabling muscle cells to perform their particular functions and brain cells to perform theirs.

The lamina is largely composed of proteins called lamins, which are like bricks that form a scaffold-like structure for the nucleus. The lamina also contains membrane proteins that dock at the lamins.

"There have been a number of human muscular and neuronal dystrophies that have been linked to [these] proteins," says Gerace. "When certain lamins and inner membrane proteins are mutated, they cause disease."

Because of this link between lamina proteins and disease, scientists would like to know the identity of all the proteins in the lamina, and previous studies have identified about 20 lamina proteins.

In their current study, Gerace and Yates used a technique called subtractive proteomics to identify 62 more candidate human nuclear membrane proteins.

In the study, TSRI Postdoctoral Fellow Eric Schirmer demonstrates that the genes encoding 23 of these candidate human nuclear membrane proteins are in regions of the genome that have already been implicated in 14 muscle- and neuro-degenerative diseases.

However, many of these regions have hundreds of genes in them; so the identification of these disease gene candidates should greatly focus identification of the culprits.

"It’s highly likely that some of these diseases will be due to [the newly identified] nuclear envelope proteins," says Gerace. "This is a pretty big step forward."

The Power of Subtractive Proteomics

Where "genomics" maps the DNA sequence and seeks to identify all the genes in an organism, "proteomics" takes a step further by asking where and when those genes are actually expressed as proteins.

One of the most important techniques emerging for proteomics studies is humbly referred to as MudPIT--Multidimensional Protein Identification Technology-which Yates has pioneered in the last few years. Using this technique, scientists like Yates are able to analyze and identify an enormous number of proteins in a complex mixture.

MudPIT basically combines liquid chromatography (which is like a molecular "sieve" that separates a complex mixture into its component parts) with tandem mass spectrometry (which identifies the components based on their masses). The instrument detects these masses and uses sophisticated software to identify thousands of separate proteins.

But MudPIT alone was not enough in this case, because the inner nuclear membrane is in contact with other structures of the cell and cannot be isolated without contaminating material. Identifying which proteins are from the inner nuclear membrane and which are contaminants presented a huge problem.

So the team used a simple subtractive technique to deal with this. They analyzed the nuclear membrane components with contaminants, containing 2,071 different proteins, and subtracted out the separately isolated contaminants, which accounted for more than 40 percent of the membrane proteins. From this list they were able to apply computational methods to limit the final list of new human nuclear membrane proteins to 62.

The scientists then took eight of these proteins at random and demonstrated that they all indeed targeted to the nuclear membrane.

The new nuclear membrane proteins identified in this study map to chromosomal regions where the following dystrophies have been localized:

Congenital Ptosis, hereditary type 1
Charcot-Marie-Tooth Disease 2A
Congenital Muscular Dystrophy 1B
Limb-Girdle Muscular Dystrophy 2B
Charcot-Marie-Tooth Disease 2A
Facioscapulohumeral Muscular Dystrophy (FSH)
Spinal Muscular Atrophy, Types 1, 2, and 3
Limb-Girdle Muscular Dystrophy 1A/1B
Arthogryposis: neurogenic, mild
Blepharophimosis 2
Charcot-Marie-Tooth Disease 2A
Distal Arthrogryposis, type 2B
Congenital Fibrosis of Extraocular Muscles 1
Distal Myopathy

The article, "Nuclear Membrane Proteins With Potential Disease Links Found By Subtractive Proteomics" was authored by Eric C. Schirmer, Laurence Florens, Tinglu Guan, John R. Yates III, and Larry Gerace and will appear in the September 5, 2003 issue of the journal Science. See: http://www.sciencemag.org.


This work was supported by the National Institutes of Health.


Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu/
http://www.sciencemag.org

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>