Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer biologists and a cardiologist take a new look at aggressive tumors

05.09.2003


An unusual collaboration between a University of Iowa cardiologist and cancer biologists at the Holden Comprehensive Cancer Center at the UI, the Scripps Research Institute in California and Kanagawa Cancer Center Hospital and Research Center in Japan utilized a multidisciplinary approach to learn more about how aggressive cancer cells function and how they differ from poorly aggressive cancer cells. The study, which appears in the Sept. 1 issue of Cancer Research, may also suggest potential new therapeutic targets for cancer treatment.


MARY J. C. HENDRIX, Ph.D.
Kate Daum Research Professor and Head



Previous studies have found that aggressive tumor cells express genes that are more normally associated with other cell types, including endothelial cells that line blood vessels. Also, aggressive cancer cells are able to form vascular-like, fluid-conducting networks, an ability known as vasculogenic mimicry that resembles the behavior of embryonic cells that form primitive vascular networks.

Patients’ tumors that have fluid-conducting networks are much more aggressive than tumors that do not have those networks.


The present study focuses on just a few of the genes that are expressed by aggressive cancer cells but not by poorly aggressive tumor cells. These genes normally are involved in regulating anticoagulant, or blood-clotting, activity in endothelial cells. The study suggests that the expression of these genes by aggressive tumor cells provides the cells with anticoagulant capabilities that are similar to those in blood vessel cells.

"Essentially our observations indicated that the aggressive melanoma tumor cells behaved in a similar manner as do endothelial cells that form blood vessels," said Mary Hendrix, Ph.D., the Kate Daum Research Professor of Anatomy and Cell Biology and head of the department.

The finding that tumor cells have anticoagulant properties similar to endothelial cells prompted the researchers to analyze whether there was blood flow within these tumors in extravascular spaces lined by tumor cells.

UI cardiologist, Robert Weiss, M.D., associate professor of internal medicine and a staff physician at the Iowa City Veterans Affairs Medical Center, used Doppler imaging to analyze blood flow within tumors. The researchers saw an exchange of blood from the normal vasculature (blood vessels) at the periphery of the tumor through tumor-cell-lined extravascular spaces within the aggressive tumor.

Although the precise role of the extravascular intra-tumoral network remains unclear, one possibility might be that the meshwork may provide a nutritional exchange for aggressive tumors that might prevent cell death within the tumor.

The observation that aggressive tumor cells over-express key anticoagulation pathway genes may help to explain how blood could flow through aggressive tumors prior to the growth of new blood vessels within the tumor compartment.

"This is yet another example of the plasticity of aggressive melanoma tumor cells in that they can mimic other cell types, such as endothelial cells, and our study provides a mechanistic example of how they do it," Hendrix said.

Hendrix added that this "chameleon-like" ability of aggressive tumor cells raises some clinically important issues.

"This plasticity represents a clinical challenge in trying to detect aggressive tumor cells," Hendrix said. "But it also provides new insights on how we might target them more effectively."

In addition to Hendrix and Weiss, the research team included Wolfram Ruf, M.D., associate professor of immunology at the Scripps Research Institute (TSRI), and lead author of the study, Ramona Petrovan, Ph.D., also at TSRI, Yohei Miyagi, M.D., at Kanagawa Cancer Center Hospital and Research Center, and UI researchers Elisabeth Seftor, Lynn Gruman, Naira Margaryan, D.V.M., Ph.D., and Richard Seftor, Ph.D.



The study was funded in part by grants from the National Institutes of Health.

University of Iowa Health Care describes the partnership between the UI Roy J. and Lucille A. Carver College of Medicine and UI Hospitals and Clinics and the patient care, medical education and research programs and services they provide. Visit UI Health Care online at http://www.uihealthcare.com.

Jennifer Brown | EurekAlert!
Further information:
http://www.uihealthcare.com
http://www.uiowa.edu/

More articles from Health and Medicine:

nachricht A 'half-hearted' solution to one-sided heart failure
24.11.2017 | Boston Children's Hospital

nachricht New study points the way to therapy for rare cancer that targets the young
22.11.2017 | Rockefeller University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>