Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer biologists and a cardiologist take a new look at aggressive tumors

05.09.2003


An unusual collaboration between a University of Iowa cardiologist and cancer biologists at the Holden Comprehensive Cancer Center at the UI, the Scripps Research Institute in California and Kanagawa Cancer Center Hospital and Research Center in Japan utilized a multidisciplinary approach to learn more about how aggressive cancer cells function and how they differ from poorly aggressive cancer cells. The study, which appears in the Sept. 1 issue of Cancer Research, may also suggest potential new therapeutic targets for cancer treatment.


MARY J. C. HENDRIX, Ph.D.
Kate Daum Research Professor and Head



Previous studies have found that aggressive tumor cells express genes that are more normally associated with other cell types, including endothelial cells that line blood vessels. Also, aggressive cancer cells are able to form vascular-like, fluid-conducting networks, an ability known as vasculogenic mimicry that resembles the behavior of embryonic cells that form primitive vascular networks.

Patients’ tumors that have fluid-conducting networks are much more aggressive than tumors that do not have those networks.


The present study focuses on just a few of the genes that are expressed by aggressive cancer cells but not by poorly aggressive tumor cells. These genes normally are involved in regulating anticoagulant, or blood-clotting, activity in endothelial cells. The study suggests that the expression of these genes by aggressive tumor cells provides the cells with anticoagulant capabilities that are similar to those in blood vessel cells.

"Essentially our observations indicated that the aggressive melanoma tumor cells behaved in a similar manner as do endothelial cells that form blood vessels," said Mary Hendrix, Ph.D., the Kate Daum Research Professor of Anatomy and Cell Biology and head of the department.

The finding that tumor cells have anticoagulant properties similar to endothelial cells prompted the researchers to analyze whether there was blood flow within these tumors in extravascular spaces lined by tumor cells.

UI cardiologist, Robert Weiss, M.D., associate professor of internal medicine and a staff physician at the Iowa City Veterans Affairs Medical Center, used Doppler imaging to analyze blood flow within tumors. The researchers saw an exchange of blood from the normal vasculature (blood vessels) at the periphery of the tumor through tumor-cell-lined extravascular spaces within the aggressive tumor.

Although the precise role of the extravascular intra-tumoral network remains unclear, one possibility might be that the meshwork may provide a nutritional exchange for aggressive tumors that might prevent cell death within the tumor.

The observation that aggressive tumor cells over-express key anticoagulation pathway genes may help to explain how blood could flow through aggressive tumors prior to the growth of new blood vessels within the tumor compartment.

"This is yet another example of the plasticity of aggressive melanoma tumor cells in that they can mimic other cell types, such as endothelial cells, and our study provides a mechanistic example of how they do it," Hendrix said.

Hendrix added that this "chameleon-like" ability of aggressive tumor cells raises some clinically important issues.

"This plasticity represents a clinical challenge in trying to detect aggressive tumor cells," Hendrix said. "But it also provides new insights on how we might target them more effectively."

In addition to Hendrix and Weiss, the research team included Wolfram Ruf, M.D., associate professor of immunology at the Scripps Research Institute (TSRI), and lead author of the study, Ramona Petrovan, Ph.D., also at TSRI, Yohei Miyagi, M.D., at Kanagawa Cancer Center Hospital and Research Center, and UI researchers Elisabeth Seftor, Lynn Gruman, Naira Margaryan, D.V.M., Ph.D., and Richard Seftor, Ph.D.



The study was funded in part by grants from the National Institutes of Health.

University of Iowa Health Care describes the partnership between the UI Roy J. and Lucille A. Carver College of Medicine and UI Hospitals and Clinics and the patient care, medical education and research programs and services they provide. Visit UI Health Care online at http://www.uihealthcare.com.

Jennifer Brown | EurekAlert!
Further information:
http://www.uihealthcare.com
http://www.uiowa.edu/

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>