Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer biologists and a cardiologist take a new look at aggressive tumors

05.09.2003


An unusual collaboration between a University of Iowa cardiologist and cancer biologists at the Holden Comprehensive Cancer Center at the UI, the Scripps Research Institute in California and Kanagawa Cancer Center Hospital and Research Center in Japan utilized a multidisciplinary approach to learn more about how aggressive cancer cells function and how they differ from poorly aggressive cancer cells. The study, which appears in the Sept. 1 issue of Cancer Research, may also suggest potential new therapeutic targets for cancer treatment.


MARY J. C. HENDRIX, Ph.D.
Kate Daum Research Professor and Head



Previous studies have found that aggressive tumor cells express genes that are more normally associated with other cell types, including endothelial cells that line blood vessels. Also, aggressive cancer cells are able to form vascular-like, fluid-conducting networks, an ability known as vasculogenic mimicry that resembles the behavior of embryonic cells that form primitive vascular networks.

Patients’ tumors that have fluid-conducting networks are much more aggressive than tumors that do not have those networks.


The present study focuses on just a few of the genes that are expressed by aggressive cancer cells but not by poorly aggressive tumor cells. These genes normally are involved in regulating anticoagulant, or blood-clotting, activity in endothelial cells. The study suggests that the expression of these genes by aggressive tumor cells provides the cells with anticoagulant capabilities that are similar to those in blood vessel cells.

"Essentially our observations indicated that the aggressive melanoma tumor cells behaved in a similar manner as do endothelial cells that form blood vessels," said Mary Hendrix, Ph.D., the Kate Daum Research Professor of Anatomy and Cell Biology and head of the department.

The finding that tumor cells have anticoagulant properties similar to endothelial cells prompted the researchers to analyze whether there was blood flow within these tumors in extravascular spaces lined by tumor cells.

UI cardiologist, Robert Weiss, M.D., associate professor of internal medicine and a staff physician at the Iowa City Veterans Affairs Medical Center, used Doppler imaging to analyze blood flow within tumors. The researchers saw an exchange of blood from the normal vasculature (blood vessels) at the periphery of the tumor through tumor-cell-lined extravascular spaces within the aggressive tumor.

Although the precise role of the extravascular intra-tumoral network remains unclear, one possibility might be that the meshwork may provide a nutritional exchange for aggressive tumors that might prevent cell death within the tumor.

The observation that aggressive tumor cells over-express key anticoagulation pathway genes may help to explain how blood could flow through aggressive tumors prior to the growth of new blood vessels within the tumor compartment.

"This is yet another example of the plasticity of aggressive melanoma tumor cells in that they can mimic other cell types, such as endothelial cells, and our study provides a mechanistic example of how they do it," Hendrix said.

Hendrix added that this "chameleon-like" ability of aggressive tumor cells raises some clinically important issues.

"This plasticity represents a clinical challenge in trying to detect aggressive tumor cells," Hendrix said. "But it also provides new insights on how we might target them more effectively."

In addition to Hendrix and Weiss, the research team included Wolfram Ruf, M.D., associate professor of immunology at the Scripps Research Institute (TSRI), and lead author of the study, Ramona Petrovan, Ph.D., also at TSRI, Yohei Miyagi, M.D., at Kanagawa Cancer Center Hospital and Research Center, and UI researchers Elisabeth Seftor, Lynn Gruman, Naira Margaryan, D.V.M., Ph.D., and Richard Seftor, Ph.D.



The study was funded in part by grants from the National Institutes of Health.

University of Iowa Health Care describes the partnership between the UI Roy J. and Lucille A. Carver College of Medicine and UI Hospitals and Clinics and the patient care, medical education and research programs and services they provide. Visit UI Health Care online at http://www.uihealthcare.com.

Jennifer Brown | EurekAlert!
Further information:
http://www.uihealthcare.com
http://www.uiowa.edu/

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>