Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancer biologists and a cardiologist take a new look at aggressive tumors

05.09.2003


An unusual collaboration between a University of Iowa cardiologist and cancer biologists at the Holden Comprehensive Cancer Center at the UI, the Scripps Research Institute in California and Kanagawa Cancer Center Hospital and Research Center in Japan utilized a multidisciplinary approach to learn more about how aggressive cancer cells function and how they differ from poorly aggressive cancer cells. The study, which appears in the Sept. 1 issue of Cancer Research, may also suggest potential new therapeutic targets for cancer treatment.


MARY J. C. HENDRIX, Ph.D.
Kate Daum Research Professor and Head



Previous studies have found that aggressive tumor cells express genes that are more normally associated with other cell types, including endothelial cells that line blood vessels. Also, aggressive cancer cells are able to form vascular-like, fluid-conducting networks, an ability known as vasculogenic mimicry that resembles the behavior of embryonic cells that form primitive vascular networks.

Patients’ tumors that have fluid-conducting networks are much more aggressive than tumors that do not have those networks.


The present study focuses on just a few of the genes that are expressed by aggressive cancer cells but not by poorly aggressive tumor cells. These genes normally are involved in regulating anticoagulant, or blood-clotting, activity in endothelial cells. The study suggests that the expression of these genes by aggressive tumor cells provides the cells with anticoagulant capabilities that are similar to those in blood vessel cells.

"Essentially our observations indicated that the aggressive melanoma tumor cells behaved in a similar manner as do endothelial cells that form blood vessels," said Mary Hendrix, Ph.D., the Kate Daum Research Professor of Anatomy and Cell Biology and head of the department.

The finding that tumor cells have anticoagulant properties similar to endothelial cells prompted the researchers to analyze whether there was blood flow within these tumors in extravascular spaces lined by tumor cells.

UI cardiologist, Robert Weiss, M.D., associate professor of internal medicine and a staff physician at the Iowa City Veterans Affairs Medical Center, used Doppler imaging to analyze blood flow within tumors. The researchers saw an exchange of blood from the normal vasculature (blood vessels) at the periphery of the tumor through tumor-cell-lined extravascular spaces within the aggressive tumor.

Although the precise role of the extravascular intra-tumoral network remains unclear, one possibility might be that the meshwork may provide a nutritional exchange for aggressive tumors that might prevent cell death within the tumor.

The observation that aggressive tumor cells over-express key anticoagulation pathway genes may help to explain how blood could flow through aggressive tumors prior to the growth of new blood vessels within the tumor compartment.

"This is yet another example of the plasticity of aggressive melanoma tumor cells in that they can mimic other cell types, such as endothelial cells, and our study provides a mechanistic example of how they do it," Hendrix said.

Hendrix added that this "chameleon-like" ability of aggressive tumor cells raises some clinically important issues.

"This plasticity represents a clinical challenge in trying to detect aggressive tumor cells," Hendrix said. "But it also provides new insights on how we might target them more effectively."

In addition to Hendrix and Weiss, the research team included Wolfram Ruf, M.D., associate professor of immunology at the Scripps Research Institute (TSRI), and lead author of the study, Ramona Petrovan, Ph.D., also at TSRI, Yohei Miyagi, M.D., at Kanagawa Cancer Center Hospital and Research Center, and UI researchers Elisabeth Seftor, Lynn Gruman, Naira Margaryan, D.V.M., Ph.D., and Richard Seftor, Ph.D.



The study was funded in part by grants from the National Institutes of Health.

University of Iowa Health Care describes the partnership between the UI Roy J. and Lucille A. Carver College of Medicine and UI Hospitals and Clinics and the patient care, medical education and research programs and services they provide. Visit UI Health Care online at http://www.uihealthcare.com.

Jennifer Brown | EurekAlert!
Further information:
http://www.uihealthcare.com
http://www.uiowa.edu/

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

Beyond the limits of conventional electronics: stable organic molecular nanowires

24.05.2018 | Power and Electrical Engineering

These could revolutionize the world

24.05.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>