Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slice of Life - a new technique to scan the human body

04.09.2003




A team of scientists and engineers from the Institute of Food Research and Lancaster University are developing a quick, safe and non-invasive scanner to measure the composition of the human body.

The prototype scanner, featured in the latest edition of New Scientist, uses two imaging techniques to simultaneously build a 3D image of the subject’s shape, and get under the skin to measure body composition.

“Techniques exist for measuring body shape and composition separately, but we are developing a system to put them together in one scanning cubicle with a sensor ring that takes just 20 seconds to scan the whole body. Using an electromagnetic technique to analyse body composition could also enable us to work out the distribution of fat and water, providing a safe and cheap alternative to using X-rays or MRI scanners”, says Dr Henri Tapp of the Institute of Food Research.



Body composition is an indicator of an individual’s nutritional status and health. Regular scans could be used to monitor child development, pregnancy, recovery from injury or surgery and changes during diet and exercise regimes. Anthropometric measures of body shape, such as android (‘apple-shaped’) and gynoid (‘pear-shaped’) fat distributions can be related to health risks such as heart disease. “In addition to clinical applications, our system could become a feature of leisure centres, allowing clients to see how their shape and composition changes through exercise”, says Dr Tapp.

The specially designed scanning cubicle is fitted with four digital cameras and eight light projectors to map the surface contours of the body, to give body volume. An array of coils is used to map the internal electrical conductivity, to give water content. The camera and coils are fitted to a sliding sensor ring, designed to scan the whole body as a series of horizontal ‘slices’.

“Our prototype has demonstrated the feasibility of adopting this approach. The next stage is to develop a prototype system leading to clinical trials and validation of the technology, which we hope to pursue with commercial partners", says Dr Tony Peyton, from the Engineering Department of Lancaster University.

The detailed explanation

The prototype scanner uses two imaging techniques to predict the amount of fat present. The system uses coils to map the internal conductivity of the body, to give the amount of water. Digital cameras are used to accurately map the surface contours to give body volume.

Either water or volume can be used with body mass to predict fat. However, combining all three gives a better estimate - by compensating for changes in hydration. An added bonus of this new approach is that it also measures the shape of the body, and that it may also be able to give regional estimates of fat content such as in the limbs and torso, or the amount of surface and internal fat.

The scanner has the coils and cameras mounted on a ring that sweeps past the subject as they stand in a cubicle to build up a picture of the body as a series of horizontal ’’slices’’. In comparison, a commercially available device measures only volume - from the amount of air displaced by a person placed within a sealed chamber. Similarly, you can also buy bathroom scales fitted with electrodes that predict fat, from estimating the water content based on the conductivity of the body.

The current stage of development of the prototype, which was funded as part of an EU project, BodyLife, is currently being presented at the 3rd World Congress on Industrial Process Tomography in Banff, Canada, 2-5 September 2003.

What is new:
  • New application for MIT – a feat because of low conductivity of human body.

  • Combining 2 imaging methods: MIT (for mapping internal conductivity) and photonic scanning (for external surface contours - shape and surface area). Neither of these measurements has been developed for measuring body composition before (a photonic scanning system was developed for the fashion industry, and attempts were made to use it to measure volume, but it was too inaccurate to be useful).

The bullet point version:

Firsts:

  • First MIT system built for body composition.
  • First Photonic Scanning system built for body composition (to our knowledge).
  • First system to measure both volume and water at same time.

Advantages of this approach:

  • Also gets shape information – such as surface area
  • Photonic scanning helps in MIT image reconstruction
  • Shape with spatial conductivity information gives improvement on existing electrical techniques
  • Can include knowledge of electrical tissue properties and anatomy in modelling the body
  • Quick, safe, non-ionising – suitable for field use, and for repeated measurements over time (to study growth, recovery from surgery or injury, effects of diet and exercise regimes)

Zoe Dunford | alfa
Further information:
http://www.ifr.ac.uk

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>