Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists explain why Crohn disease is localized to specific regions of the gut

03.09.2003


Markus Neurath and fellow researchers at the University of Mainz, Germany, have characterized the interaction between intestinal bacteria and dendritic cells (DCs) that may provide an explanation for the clinical symptoms of Crohn disease that only occur in specific regions of the gut.



The authors used transgenic mice to investigate the expression of the p40 subunit of IL-12 and IL-23. The authors demonstrate that p40 is expressed by a newly identified subset of DCs at greater levels in the lower part of the small intestine when compared to the proximal part of the small intestine or the colon.

Neurath and colleagues demonstrate that p40 production is dependent on the intestinal bacteria as germ-free animals do not exhibit elevated p40 expression in the small intestine.


The data reveal important functional differences between the mucosal immune systems of the small and large bowel in healthy mice and suggest that the high numbers of bacteria in the terminal ileum activate p40 expression. The authors suggest that this pattern of p40 expression may explain the predisposition of the terminal ileum to develop chronic inflammation responses via IL-23 and may therefore provide a molecular reason for the preferential clinical manifestation of Crohn disease in this region of the gut.

In an accompanying commentary, Holm Uhlig and Fiona Powrie from the University of Oxford discuss how intestinal DCs sense bacteria in the gut. They also comment that the IL-12 p40 promoter transgenic mice produced by Neurath and coworkers "will be an excellent tool to study the interaction between particular bacteria and the host immune system and how this influences the localization of the immune response".


TITLE: Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells

AUTHOR CONTACT:
Markus F. Neurath,
University of Mainz, Mainz, Germany
Phone: 49-6131-172374
Fax: 49-6131-175508
E-mail: neurath@1-med.klinik.uni-mainz.de


ACCOMPANYING COMMENTARY:
Dendritic cells and the intestinal bacterial flora: a role for localized mucosal immune responses

AUTHOR CONTACT:
Fiona Powrie
Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
Phone: 44-1865-285494
Fax: 44-1865-275591
E-mail: fiona.powrie@pathology.ox.ac.uk

Brooke Grindlinger | EurekAlert!
Further information:
http://www.jci.org/
http://www.the-jci.org/press/19545.pdf
http://www.the-jci.org/press/17464.pdf

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>