Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists explain why Crohn disease is localized to specific regions of the gut

03.09.2003


Markus Neurath and fellow researchers at the University of Mainz, Germany, have characterized the interaction between intestinal bacteria and dendritic cells (DCs) that may provide an explanation for the clinical symptoms of Crohn disease that only occur in specific regions of the gut.



The authors used transgenic mice to investigate the expression of the p40 subunit of IL-12 and IL-23. The authors demonstrate that p40 is expressed by a newly identified subset of DCs at greater levels in the lower part of the small intestine when compared to the proximal part of the small intestine or the colon.

Neurath and colleagues demonstrate that p40 production is dependent on the intestinal bacteria as germ-free animals do not exhibit elevated p40 expression in the small intestine.


The data reveal important functional differences between the mucosal immune systems of the small and large bowel in healthy mice and suggest that the high numbers of bacteria in the terminal ileum activate p40 expression. The authors suggest that this pattern of p40 expression may explain the predisposition of the terminal ileum to develop chronic inflammation responses via IL-23 and may therefore provide a molecular reason for the preferential clinical manifestation of Crohn disease in this region of the gut.

In an accompanying commentary, Holm Uhlig and Fiona Powrie from the University of Oxford discuss how intestinal DCs sense bacteria in the gut. They also comment that the IL-12 p40 promoter transgenic mice produced by Neurath and coworkers "will be an excellent tool to study the interaction between particular bacteria and the host immune system and how this influences the localization of the immune response".


TITLE: Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells

AUTHOR CONTACT:
Markus F. Neurath,
University of Mainz, Mainz, Germany
Phone: 49-6131-172374
Fax: 49-6131-175508
E-mail: neurath@1-med.klinik.uni-mainz.de


ACCOMPANYING COMMENTARY:
Dendritic cells and the intestinal bacterial flora: a role for localized mucosal immune responses

AUTHOR CONTACT:
Fiona Powrie
Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
Phone: 44-1865-285494
Fax: 44-1865-275591
E-mail: fiona.powrie@pathology.ox.ac.uk

Brooke Grindlinger | EurekAlert!
Further information:
http://www.jci.org/
http://www.the-jci.org/press/19545.pdf
http://www.the-jci.org/press/17464.pdf

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>