Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists explain why Crohn disease is localized to specific regions of the gut

03.09.2003


Markus Neurath and fellow researchers at the University of Mainz, Germany, have characterized the interaction between intestinal bacteria and dendritic cells (DCs) that may provide an explanation for the clinical symptoms of Crohn disease that only occur in specific regions of the gut.



The authors used transgenic mice to investigate the expression of the p40 subunit of IL-12 and IL-23. The authors demonstrate that p40 is expressed by a newly identified subset of DCs at greater levels in the lower part of the small intestine when compared to the proximal part of the small intestine or the colon.

Neurath and colleagues demonstrate that p40 production is dependent on the intestinal bacteria as germ-free animals do not exhibit elevated p40 expression in the small intestine.


The data reveal important functional differences between the mucosal immune systems of the small and large bowel in healthy mice and suggest that the high numbers of bacteria in the terminal ileum activate p40 expression. The authors suggest that this pattern of p40 expression may explain the predisposition of the terminal ileum to develop chronic inflammation responses via IL-23 and may therefore provide a molecular reason for the preferential clinical manifestation of Crohn disease in this region of the gut.

In an accompanying commentary, Holm Uhlig and Fiona Powrie from the University of Oxford discuss how intestinal DCs sense bacteria in the gut. They also comment that the IL-12 p40 promoter transgenic mice produced by Neurath and coworkers "will be an excellent tool to study the interaction between particular bacteria and the host immune system and how this influences the localization of the immune response".


TITLE: Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells

AUTHOR CONTACT:
Markus F. Neurath,
University of Mainz, Mainz, Germany
Phone: 49-6131-172374
Fax: 49-6131-175508
E-mail: neurath@1-med.klinik.uni-mainz.de


ACCOMPANYING COMMENTARY:
Dendritic cells and the intestinal bacterial flora: a role for localized mucosal immune responses

AUTHOR CONTACT:
Fiona Powrie
Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
Phone: 44-1865-285494
Fax: 44-1865-275591
E-mail: fiona.powrie@pathology.ox.ac.uk

Brooke Grindlinger | EurekAlert!
Further information:
http://www.jci.org/
http://www.the-jci.org/press/19545.pdf
http://www.the-jci.org/press/17464.pdf

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

Method uses DNA, nanoparticles and lithography to make optically active structures

19.01.2018 | Materials Sciences

More genes are active in high-performance maize

19.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>