Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Researchers Decipher Function Of Blood-Brain Barrier in Bacterial Meningitis

03.09.2003


The first line of defense used by the human blood-brain barrier in response to bacterial meningitis is described by researchers at the University of California, San Diego (UCSD) School of Medicine in a study published in the September 2, 2003 issue of The Journal of Clinical Investigation. The scientists also describe two bacterial factors specific to the meningitis pathogen that thwart the normal protective role of the blood-brain barrier, leading to serious infection.


Schematic illustration of the blood-brain barrier response to the bacterium.Group B Streptococcus during newborn meningitis. Endothelial cells activate genes and produce protein factors that summon white blood cells to the brain to help fight the infection.


Kelly Doran, Ph.D., lead author



Composed of a layer of blood vessels called brain microvascular endothelial cells (BMEC), the blood-brain barrier separates the brain and its surrounding tissues from the circulating blood, tightly regulating the flow of nutrients and molecules and thereby maintaining the proper biochemical conditions for normal brain function.

Bacterial meningitis, a serious brain infection, can develop rapidly into a life-threatening infection even in previously healthy children or adults. Bacteria-producing meningitis enter the human bloodstream, are carried toward the brain, and somehow manage to cross the defensive line of the blood-brain barrier.


Using an experimental blood-brain barrier established by growing layers of human BMEC in tissue culture plates, the UCSD team observed that a specific set of 80 genes in the blood-brain barrier were activated when exposed to the pathogen Group B Streptococcus (GBS), the leading cause of bacterial meningitis in human newborn infants. These genes released proteins that mobilized human white blood cells called neutrophils, which are attracted to sites of infection.

Lead author Kelly Doran, Ph.D., assistant adjunct professor of pediatrics in the UCSD Division of Infectious Diseases, said “these findings demonstrate a novel function of the blood-brain barrier, to act as a sentry that detects the threat of a bacterial pathogen and responds by triggering an immune response to clear the infection.”

According to senior author Victor Nizet, M.D., associate professor of pediatrics, UCSD Division of Infectious Diseases and an attending physician at Children’s Hospital, San Diego, “the experiments also explain the basic mechanisms underlying the critical test used by physicians to make an early diagnosis of bacterial meningitis, namely the presence of abundant neutrophils in the fluid collected from the patient by the procedure known as a spinal tap.”

Although the blood-brain barrier effectively blocks the vast majority of circulating bacteria from entering the brain, its defensive function fails in bacterial meningitis infections. To understand how specific virulence properties of the GBS pathogen affect the blood-brain barrier immune response, the UCSD team developed mutant strains of GBS.

Hypothesizing that the capsule coating the surface of the GBS pathogen decreases the ability of the white blood cells and blood-brain barrier cells to recognize the bacteria as foreign, the researchers developed a GBS bacteria without a capsule. They discovered that the mutant was more easily recognized by the blood-brain barrier, which triggered a protective immune response.

“Thus, the role of the capsule is to cloak the bacteria, resulting in a weakened initial immune response that allows the pathogen to survive in the blood and produce an infection within the small blood vessels of the brain,” Nizet said. “It appears that the normal GBS with a capsule may represent a form of ‘molecular mimicry,’ where the bacteria disguises itself to look more like the host and avoid immune recognition.”

In a second test, the researchers developed a GBS mutant that lacked a potent cell-damaging toxin called beta-hemolysin/cytolysin. Mouse models infected with this mutant bacteria produced less meningitis than mice given normal GBS bacteria.

The researchers determined that after the GBS bacteria reach high concentrations in the blood-brain barrier, the action of the beta-hemolysin/cytolysin toxin injures the endothelial cells, breaks down the blood-brain barrier, and provokes the neutrophil inflammatory response that is the hallmark of bacterial meningitis. But by then it is too late as the bacteria are already entering the brain tissues. In fact, the activated neutrophils produce toxic compounds in an attempt to kill the bacteria, and these compounds also contribute to the brain injury of meningitis.

The UCSD team is continuing its studies to learn more about the role of pathogens in brain infection.

“We believe our ongoing studies of the interactions of the blood-brain barrier with bacterial pathogens will help uncover basic biologic principles that will lead to improved therapies for meningitis and other central nervous system infections,” Doran said.

George Liu, M.D., Ph.D., infectious diseases fellow, UCSD Department of Pediatrics, also contributed to the study. The work was funded by a Burroughs Wellcome Foundation Career Award to Doran, a Howard Hughes Medical Institute Postdoctoral Fellowship to Liu, an Edward J. Mallinckrodt Scholar Award to Nizet, the National Institutes of Health, and the United Cerebral Palsy Research Foundation.



News Media Contact:
Sue Pondrom
619-543-6163
spondrom@ucsd.edu

Sue Pondrom | UCSD
Further information:
http://health.ucsd.edu/news/2003/09_02_Nizet.html
http://health.ucsd.edu/news/

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>