Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UCSD Researchers Decipher Function Of Blood-Brain Barrier in Bacterial Meningitis


The first line of defense used by the human blood-brain barrier in response to bacterial meningitis is described by researchers at the University of California, San Diego (UCSD) School of Medicine in a study published in the September 2, 2003 issue of The Journal of Clinical Investigation. The scientists also describe two bacterial factors specific to the meningitis pathogen that thwart the normal protective role of the blood-brain barrier, leading to serious infection.

Schematic illustration of the blood-brain barrier response to the bacterium.Group B Streptococcus during newborn meningitis. Endothelial cells activate genes and produce protein factors that summon white blood cells to the brain to help fight the infection.

Kelly Doran, Ph.D., lead author

Composed of a layer of blood vessels called brain microvascular endothelial cells (BMEC), the blood-brain barrier separates the brain and its surrounding tissues from the circulating blood, tightly regulating the flow of nutrients and molecules and thereby maintaining the proper biochemical conditions for normal brain function.

Bacterial meningitis, a serious brain infection, can develop rapidly into a life-threatening infection even in previously healthy children or adults. Bacteria-producing meningitis enter the human bloodstream, are carried toward the brain, and somehow manage to cross the defensive line of the blood-brain barrier.

Using an experimental blood-brain barrier established by growing layers of human BMEC in tissue culture plates, the UCSD team observed that a specific set of 80 genes in the blood-brain barrier were activated when exposed to the pathogen Group B Streptococcus (GBS), the leading cause of bacterial meningitis in human newborn infants. These genes released proteins that mobilized human white blood cells called neutrophils, which are attracted to sites of infection.

Lead author Kelly Doran, Ph.D., assistant adjunct professor of pediatrics in the UCSD Division of Infectious Diseases, said “these findings demonstrate a novel function of the blood-brain barrier, to act as a sentry that detects the threat of a bacterial pathogen and responds by triggering an immune response to clear the infection.”

According to senior author Victor Nizet, M.D., associate professor of pediatrics, UCSD Division of Infectious Diseases and an attending physician at Children’s Hospital, San Diego, “the experiments also explain the basic mechanisms underlying the critical test used by physicians to make an early diagnosis of bacterial meningitis, namely the presence of abundant neutrophils in the fluid collected from the patient by the procedure known as a spinal tap.”

Although the blood-brain barrier effectively blocks the vast majority of circulating bacteria from entering the brain, its defensive function fails in bacterial meningitis infections. To understand how specific virulence properties of the GBS pathogen affect the blood-brain barrier immune response, the UCSD team developed mutant strains of GBS.

Hypothesizing that the capsule coating the surface of the GBS pathogen decreases the ability of the white blood cells and blood-brain barrier cells to recognize the bacteria as foreign, the researchers developed a GBS bacteria without a capsule. They discovered that the mutant was more easily recognized by the blood-brain barrier, which triggered a protective immune response.

“Thus, the role of the capsule is to cloak the bacteria, resulting in a weakened initial immune response that allows the pathogen to survive in the blood and produce an infection within the small blood vessels of the brain,” Nizet said. “It appears that the normal GBS with a capsule may represent a form of ‘molecular mimicry,’ where the bacteria disguises itself to look more like the host and avoid immune recognition.”

In a second test, the researchers developed a GBS mutant that lacked a potent cell-damaging toxin called beta-hemolysin/cytolysin. Mouse models infected with this mutant bacteria produced less meningitis than mice given normal GBS bacteria.

The researchers determined that after the GBS bacteria reach high concentrations in the blood-brain barrier, the action of the beta-hemolysin/cytolysin toxin injures the endothelial cells, breaks down the blood-brain barrier, and provokes the neutrophil inflammatory response that is the hallmark of bacterial meningitis. But by then it is too late as the bacteria are already entering the brain tissues. In fact, the activated neutrophils produce toxic compounds in an attempt to kill the bacteria, and these compounds also contribute to the brain injury of meningitis.

The UCSD team is continuing its studies to learn more about the role of pathogens in brain infection.

“We believe our ongoing studies of the interactions of the blood-brain barrier with bacterial pathogens will help uncover basic biologic principles that will lead to improved therapies for meningitis and other central nervous system infections,” Doran said.

George Liu, M.D., Ph.D., infectious diseases fellow, UCSD Department of Pediatrics, also contributed to the study. The work was funded by a Burroughs Wellcome Foundation Career Award to Doran, a Howard Hughes Medical Institute Postdoctoral Fellowship to Liu, an Edward J. Mallinckrodt Scholar Award to Nizet, the National Institutes of Health, and the United Cerebral Palsy Research Foundation.

News Media Contact:
Sue Pondrom

Sue Pondrom | UCSD
Further information:

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>