Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Researchers Decipher Function Of Blood-Brain Barrier in Bacterial Meningitis

03.09.2003


The first line of defense used by the human blood-brain barrier in response to bacterial meningitis is described by researchers at the University of California, San Diego (UCSD) School of Medicine in a study published in the September 2, 2003 issue of The Journal of Clinical Investigation. The scientists also describe two bacterial factors specific to the meningitis pathogen that thwart the normal protective role of the blood-brain barrier, leading to serious infection.


Schematic illustration of the blood-brain barrier response to the bacterium.Group B Streptococcus during newborn meningitis. Endothelial cells activate genes and produce protein factors that summon white blood cells to the brain to help fight the infection.


Kelly Doran, Ph.D., lead author



Composed of a layer of blood vessels called brain microvascular endothelial cells (BMEC), the blood-brain barrier separates the brain and its surrounding tissues from the circulating blood, tightly regulating the flow of nutrients and molecules and thereby maintaining the proper biochemical conditions for normal brain function.

Bacterial meningitis, a serious brain infection, can develop rapidly into a life-threatening infection even in previously healthy children or adults. Bacteria-producing meningitis enter the human bloodstream, are carried toward the brain, and somehow manage to cross the defensive line of the blood-brain barrier.


Using an experimental blood-brain barrier established by growing layers of human BMEC in tissue culture plates, the UCSD team observed that a specific set of 80 genes in the blood-brain barrier were activated when exposed to the pathogen Group B Streptococcus (GBS), the leading cause of bacterial meningitis in human newborn infants. These genes released proteins that mobilized human white blood cells called neutrophils, which are attracted to sites of infection.

Lead author Kelly Doran, Ph.D., assistant adjunct professor of pediatrics in the UCSD Division of Infectious Diseases, said “these findings demonstrate a novel function of the blood-brain barrier, to act as a sentry that detects the threat of a bacterial pathogen and responds by triggering an immune response to clear the infection.”

According to senior author Victor Nizet, M.D., associate professor of pediatrics, UCSD Division of Infectious Diseases and an attending physician at Children’s Hospital, San Diego, “the experiments also explain the basic mechanisms underlying the critical test used by physicians to make an early diagnosis of bacterial meningitis, namely the presence of abundant neutrophils in the fluid collected from the patient by the procedure known as a spinal tap.”

Although the blood-brain barrier effectively blocks the vast majority of circulating bacteria from entering the brain, its defensive function fails in bacterial meningitis infections. To understand how specific virulence properties of the GBS pathogen affect the blood-brain barrier immune response, the UCSD team developed mutant strains of GBS.

Hypothesizing that the capsule coating the surface of the GBS pathogen decreases the ability of the white blood cells and blood-brain barrier cells to recognize the bacteria as foreign, the researchers developed a GBS bacteria without a capsule. They discovered that the mutant was more easily recognized by the blood-brain barrier, which triggered a protective immune response.

“Thus, the role of the capsule is to cloak the bacteria, resulting in a weakened initial immune response that allows the pathogen to survive in the blood and produce an infection within the small blood vessels of the brain,” Nizet said. “It appears that the normal GBS with a capsule may represent a form of ‘molecular mimicry,’ where the bacteria disguises itself to look more like the host and avoid immune recognition.”

In a second test, the researchers developed a GBS mutant that lacked a potent cell-damaging toxin called beta-hemolysin/cytolysin. Mouse models infected with this mutant bacteria produced less meningitis than mice given normal GBS bacteria.

The researchers determined that after the GBS bacteria reach high concentrations in the blood-brain barrier, the action of the beta-hemolysin/cytolysin toxin injures the endothelial cells, breaks down the blood-brain barrier, and provokes the neutrophil inflammatory response that is the hallmark of bacterial meningitis. But by then it is too late as the bacteria are already entering the brain tissues. In fact, the activated neutrophils produce toxic compounds in an attempt to kill the bacteria, and these compounds also contribute to the brain injury of meningitis.

The UCSD team is continuing its studies to learn more about the role of pathogens in brain infection.

“We believe our ongoing studies of the interactions of the blood-brain barrier with bacterial pathogens will help uncover basic biologic principles that will lead to improved therapies for meningitis and other central nervous system infections,” Doran said.

George Liu, M.D., Ph.D., infectious diseases fellow, UCSD Department of Pediatrics, also contributed to the study. The work was funded by a Burroughs Wellcome Foundation Career Award to Doran, a Howard Hughes Medical Institute Postdoctoral Fellowship to Liu, an Edward J. Mallinckrodt Scholar Award to Nizet, the National Institutes of Health, and the United Cerebral Palsy Research Foundation.



News Media Contact:
Sue Pondrom
619-543-6163
spondrom@ucsd.edu

Sue Pondrom | UCSD
Further information:
http://health.ucsd.edu/news/2003/09_02_Nizet.html
http://health.ucsd.edu/news/

More articles from Health and Medicine:

nachricht Mobile phone test can reveal vision problems in time
11.02.2016 | University of Gothenburg

nachricht Proteomics and precision medicine
08.02.2016 | University of Iowa Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

Graphene leans on glass to advance electronics

12.02.2016 | Materials Sciences

Twisting magnets enhance data storage capacity

12.02.2016 | Materials Sciences

A metal that behaves like water

12.02.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>