Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse, stripped of a key gene, resists diabetes

03.09.2003


An engineered mouse, already known to be immune to the weight gain ramifications of a high-calorie, high-fat diet, now seems able to resist the onset of diabetes.


Professor of biochemistry and nutritional sciences James Ntambi holds two mice in his research lab and points to the mouse that is missing a SCD-1 gene and is significantly thinner than the normal mouse at right. Ntambi recently found that subracting a single gene, SCD-1, from the genome of a mouse creates an animal that can eat a rich, high-fat diet without gaining weight or risking the complications of diabetes.
Photo by: Jeff Miller
Date: August 2002



The mouse, stripped of a gene known as SCD-1, is apparently impervious to the negative effects of the type of diet that, for many people, has significant health and social consequences.

"We think this animal model may be protected against diabetes," says James Ntambi, a University of Wisconsin-Madison professor of biochemistry and Steenbock professor of nutrition, and the senior author of a report describing the remarkable mouse in this week’s (Sept. 1) online editions of the Proceedings of the National Academy of Sciences (PNAS).


The new finding is important because it provides critical genetic and biochemical clues to diet, obesity and the onset of a disease that affects as much as 6 percent of the U.S. population.

Type II diabetes, which accounts for about 90 percent of the incidence of diabetes in the United States, is a chronic disease caused by a problem in the way the body makes or uses insulin. Insulin is a hormone secreted by the pancreas that, under healthy circumstances, plays an essential role in moving glucose from blood to cells where the sugar’s energy is expended.

In many instances, obesity and diabetes go hand in hand. Between 75 and 80 percent of people with type II diabetes are obese, although the disease can also develop in lean people, especially the elderly.

The discovery of a gene that seems to exercise significant influence over both weight gain and glucose regulation promises a potentially significant window into both conditions and their relationship. The gene makes an enzyme called SCD. It affects the production of fatty acids, and because humans have SCD-1 equivalents, the new finding helps explain why some people, who may lack the gene, remain lean and diabetes free, despite a rich, fatty diet.

"We are beginning to suspect that obese individuals have increased expression of this enzyme," says Ntambi. "If you reduce expression of this enzyme, you reduce fat expression in muscle."

This new insight into the gene and its influence could herald the development of new drugs to prevent both diabetes and obesity as it may help scientists zero in on the underlying problems that lead to both conditions.

In the engineered mice, the Wisconsin team observed that muscle cells were more sensitive to insulin, enabling the cells to absorb glucose and avoid hyperglycemia. Elevated levels of glucose in the blood prompt the pancreas to produce more insulin, which tends to make cells even more resistant to the critical hormone.

"In this animal, there is increased insulin signaling or sensitivity," Ntambi explains. "When insulin binds to the cell’s insulin receptor, it triggers a cascade of events " that enables the animal to successfully regulate levels of blood sugar.

"There are lots of steps involved in the process, and in the case of type II diabetes things go wrong in some of those events," Ntambi says. "What we found in these animals is that the insulin signaling steps in muscle are all enhanced, despite low levels of insulin in plasma. We don’t see a defect yet."


The work by the Wisconsin team was funded primarily by the National Institutes of Health and in part by a grant from Xenon Genetics, Inc.

In addition to Ntambi, co-authors of the PNAS report include Shaikh Mizanoor Rahman, Agnieszka Dobrzyn, Pawel Dobrzyn, Seong-Ho Lee and Makoto Miyazaki.

- Terry Devitt (608) 262-8282, trdevitt@wisc.edu

James Ntambi | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>