Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human Embryonic Stem Cell Derived Cardiomyocytes: A Novel Source for Cell Therapy

02.09.2003


ESC Congress 2003



Adult heart cells have limited regenerative capacity and therefore any significant cell loss, such as occurs during a heart attack, is mostly irreversible and may lead to the development of progressive heart failure. Congestive heart failure is one of the leading causes of morbidity and mortality in the western world, placing a significant economic burden on the health care systems. Despite advances in the medical, interventional, and surgical therapeutic measures, the prognosis for these patients remains unacceptably poor. With a chronic lack of donors limiting the number of patients who can benefit from heart transplantations, development of new therapeutic paradigms for heart failure has become imperative

A potential novel therapeutic approach for this situation may be to replace the dysfunctional or scarred tissue with new myogenic cells. However, this cell replacement strategy has been hampered by the lack of cell sources for human heart cells and by the lack of direct evidence for functional integration of donor and host tissues. We describe the establishment of a novel source of cardiomyocytes for cell therapy, the human embryonic stem cell differentiating system. Our results demonstrate that these unique cells can differentiate in the dish to generate spontaneously contracting tissue with the structural and functional properties of cardiac cells. We also demonstrate that the generated cardiac tissue can integrate in vitro with preexisting cardiac cultures as to form a single functional unit.


Human embryonic stem cells are unique cell lines that can be propagated in culture in the undifferentiated state for prolong periods while retaining the capability to differentiate into a variety of tissue types. We have previously established a cardiomyocyte differentiating system from these unique cells in which spontaneously beating areas could be observed within three-dimensional differentiating clusters of cells. Detailed structural, molecular, and functional studies established that these contracting cells are indeed human heart cells. Recently, we have expanded these observations and demonstrated that these cells have electrical properties typical of cardiomyocytes with the appropriate proteins and currents. We have further demonstrated that this system is not limited to the development of isolated heart cells but rather a small-scale functional cardiac tissue is generated with all cells beating in concert. In further studies, contracting human ES cell-derived cardiomyocytes were grafted to primary rat cardiac cultures in the culture dish. Within 24 hours clearly identified synchronous contractions were observed in all co-cultures. Long term analysis revealed that the grafted cells integrated structurally and functionally with host tissue.

Our results provide a possible new source for human cardiac tissue for future cell therapy and tissue engineering strategies attempting to regenerate functional myocardium. We also demonstrated that this tissue has the typical structural and electrophysiological properties of human heart cells and that these cells can integrate and function synchronously with preexisting cardiac cultures. Nevertheless, several obstacles must be overcome before any clinical applications from these cells can be expected. These include the need to increase the yield of heart cells during the differentiation process, the need to generate pure populations of cardiac cells, the need upscale the entire procedure in order to generate the hundred millions of cells required to replace the lost cells, the need to combat immune rejection, and the need to develop in vivo transplantation strategies.

Lior Gepstein, MD, PhD
Bruce Rappaport Faculty of Medicine, Cardiovascular Research Laboratory, Technion-Israel Institute of Technology, Haifa
Israel

Important: This press release accompanies both a presentation and an ESC press conference given at the ESC Congress 2003. Written by the investigator himself/herself, this press release does not necessarily reflect the opinion of the European Society of Cardiology

Camilla Dormer | alfa
Further information:
http://www.escardio.org

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>