Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human Embryonic Stem Cell Derived Cardiomyocytes: A Novel Source for Cell Therapy

02.09.2003


ESC Congress 2003



Adult heart cells have limited regenerative capacity and therefore any significant cell loss, such as occurs during a heart attack, is mostly irreversible and may lead to the development of progressive heart failure. Congestive heart failure is one of the leading causes of morbidity and mortality in the western world, placing a significant economic burden on the health care systems. Despite advances in the medical, interventional, and surgical therapeutic measures, the prognosis for these patients remains unacceptably poor. With a chronic lack of donors limiting the number of patients who can benefit from heart transplantations, development of new therapeutic paradigms for heart failure has become imperative

A potential novel therapeutic approach for this situation may be to replace the dysfunctional or scarred tissue with new myogenic cells. However, this cell replacement strategy has been hampered by the lack of cell sources for human heart cells and by the lack of direct evidence for functional integration of donor and host tissues. We describe the establishment of a novel source of cardiomyocytes for cell therapy, the human embryonic stem cell differentiating system. Our results demonstrate that these unique cells can differentiate in the dish to generate spontaneously contracting tissue with the structural and functional properties of cardiac cells. We also demonstrate that the generated cardiac tissue can integrate in vitro with preexisting cardiac cultures as to form a single functional unit.


Human embryonic stem cells are unique cell lines that can be propagated in culture in the undifferentiated state for prolong periods while retaining the capability to differentiate into a variety of tissue types. We have previously established a cardiomyocyte differentiating system from these unique cells in which spontaneously beating areas could be observed within three-dimensional differentiating clusters of cells. Detailed structural, molecular, and functional studies established that these contracting cells are indeed human heart cells. Recently, we have expanded these observations and demonstrated that these cells have electrical properties typical of cardiomyocytes with the appropriate proteins and currents. We have further demonstrated that this system is not limited to the development of isolated heart cells but rather a small-scale functional cardiac tissue is generated with all cells beating in concert. In further studies, contracting human ES cell-derived cardiomyocytes were grafted to primary rat cardiac cultures in the culture dish. Within 24 hours clearly identified synchronous contractions were observed in all co-cultures. Long term analysis revealed that the grafted cells integrated structurally and functionally with host tissue.

Our results provide a possible new source for human cardiac tissue for future cell therapy and tissue engineering strategies attempting to regenerate functional myocardium. We also demonstrated that this tissue has the typical structural and electrophysiological properties of human heart cells and that these cells can integrate and function synchronously with preexisting cardiac cultures. Nevertheless, several obstacles must be overcome before any clinical applications from these cells can be expected. These include the need to increase the yield of heart cells during the differentiation process, the need to generate pure populations of cardiac cells, the need upscale the entire procedure in order to generate the hundred millions of cells required to replace the lost cells, the need to combat immune rejection, and the need to develop in vivo transplantation strategies.

Lior Gepstein, MD, PhD
Bruce Rappaport Faculty of Medicine, Cardiovascular Research Laboratory, Technion-Israel Institute of Technology, Haifa
Israel

Important: This press release accompanies both a presentation and an ESC press conference given at the ESC Congress 2003. Written by the investigator himself/herself, this press release does not necessarily reflect the opinion of the European Society of Cardiology

Camilla Dormer | alfa
Further information:
http://www.escardio.org

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>