Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human Embryonic Stem Cell Derived Cardiomyocytes: A Novel Source for Cell Therapy

02.09.2003


ESC Congress 2003



Adult heart cells have limited regenerative capacity and therefore any significant cell loss, such as occurs during a heart attack, is mostly irreversible and may lead to the development of progressive heart failure. Congestive heart failure is one of the leading causes of morbidity and mortality in the western world, placing a significant economic burden on the health care systems. Despite advances in the medical, interventional, and surgical therapeutic measures, the prognosis for these patients remains unacceptably poor. With a chronic lack of donors limiting the number of patients who can benefit from heart transplantations, development of new therapeutic paradigms for heart failure has become imperative

A potential novel therapeutic approach for this situation may be to replace the dysfunctional or scarred tissue with new myogenic cells. However, this cell replacement strategy has been hampered by the lack of cell sources for human heart cells and by the lack of direct evidence for functional integration of donor and host tissues. We describe the establishment of a novel source of cardiomyocytes for cell therapy, the human embryonic stem cell differentiating system. Our results demonstrate that these unique cells can differentiate in the dish to generate spontaneously contracting tissue with the structural and functional properties of cardiac cells. We also demonstrate that the generated cardiac tissue can integrate in vitro with preexisting cardiac cultures as to form a single functional unit.


Human embryonic stem cells are unique cell lines that can be propagated in culture in the undifferentiated state for prolong periods while retaining the capability to differentiate into a variety of tissue types. We have previously established a cardiomyocyte differentiating system from these unique cells in which spontaneously beating areas could be observed within three-dimensional differentiating clusters of cells. Detailed structural, molecular, and functional studies established that these contracting cells are indeed human heart cells. Recently, we have expanded these observations and demonstrated that these cells have electrical properties typical of cardiomyocytes with the appropriate proteins and currents. We have further demonstrated that this system is not limited to the development of isolated heart cells but rather a small-scale functional cardiac tissue is generated with all cells beating in concert. In further studies, contracting human ES cell-derived cardiomyocytes were grafted to primary rat cardiac cultures in the culture dish. Within 24 hours clearly identified synchronous contractions were observed in all co-cultures. Long term analysis revealed that the grafted cells integrated structurally and functionally with host tissue.

Our results provide a possible new source for human cardiac tissue for future cell therapy and tissue engineering strategies attempting to regenerate functional myocardium. We also demonstrated that this tissue has the typical structural and electrophysiological properties of human heart cells and that these cells can integrate and function synchronously with preexisting cardiac cultures. Nevertheless, several obstacles must be overcome before any clinical applications from these cells can be expected. These include the need to increase the yield of heart cells during the differentiation process, the need to generate pure populations of cardiac cells, the need upscale the entire procedure in order to generate the hundred millions of cells required to replace the lost cells, the need to combat immune rejection, and the need to develop in vivo transplantation strategies.

Lior Gepstein, MD, PhD
Bruce Rappaport Faculty of Medicine, Cardiovascular Research Laboratory, Technion-Israel Institute of Technology, Haifa
Israel

Important: This press release accompanies both a presentation and an ESC press conference given at the ESC Congress 2003. Written by the investigator himself/herself, this press release does not necessarily reflect the opinion of the European Society of Cardiology

Camilla Dormer | alfa
Further information:
http://www.escardio.org

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>