Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human Embryonic Stem Cell Derived Cardiomyocytes: A Novel Source for Cell Therapy

02.09.2003


ESC Congress 2003



Adult heart cells have limited regenerative capacity and therefore any significant cell loss, such as occurs during a heart attack, is mostly irreversible and may lead to the development of progressive heart failure. Congestive heart failure is one of the leading causes of morbidity and mortality in the western world, placing a significant economic burden on the health care systems. Despite advances in the medical, interventional, and surgical therapeutic measures, the prognosis for these patients remains unacceptably poor. With a chronic lack of donors limiting the number of patients who can benefit from heart transplantations, development of new therapeutic paradigms for heart failure has become imperative

A potential novel therapeutic approach for this situation may be to replace the dysfunctional or scarred tissue with new myogenic cells. However, this cell replacement strategy has been hampered by the lack of cell sources for human heart cells and by the lack of direct evidence for functional integration of donor and host tissues. We describe the establishment of a novel source of cardiomyocytes for cell therapy, the human embryonic stem cell differentiating system. Our results demonstrate that these unique cells can differentiate in the dish to generate spontaneously contracting tissue with the structural and functional properties of cardiac cells. We also demonstrate that the generated cardiac tissue can integrate in vitro with preexisting cardiac cultures as to form a single functional unit.


Human embryonic stem cells are unique cell lines that can be propagated in culture in the undifferentiated state for prolong periods while retaining the capability to differentiate into a variety of tissue types. We have previously established a cardiomyocyte differentiating system from these unique cells in which spontaneously beating areas could be observed within three-dimensional differentiating clusters of cells. Detailed structural, molecular, and functional studies established that these contracting cells are indeed human heart cells. Recently, we have expanded these observations and demonstrated that these cells have electrical properties typical of cardiomyocytes with the appropriate proteins and currents. We have further demonstrated that this system is not limited to the development of isolated heart cells but rather a small-scale functional cardiac tissue is generated with all cells beating in concert. In further studies, contracting human ES cell-derived cardiomyocytes were grafted to primary rat cardiac cultures in the culture dish. Within 24 hours clearly identified synchronous contractions were observed in all co-cultures. Long term analysis revealed that the grafted cells integrated structurally and functionally with host tissue.

Our results provide a possible new source for human cardiac tissue for future cell therapy and tissue engineering strategies attempting to regenerate functional myocardium. We also demonstrated that this tissue has the typical structural and electrophysiological properties of human heart cells and that these cells can integrate and function synchronously with preexisting cardiac cultures. Nevertheless, several obstacles must be overcome before any clinical applications from these cells can be expected. These include the need to increase the yield of heart cells during the differentiation process, the need to generate pure populations of cardiac cells, the need upscale the entire procedure in order to generate the hundred millions of cells required to replace the lost cells, the need to combat immune rejection, and the need to develop in vivo transplantation strategies.

Lior Gepstein, MD, PhD
Bruce Rappaport Faculty of Medicine, Cardiovascular Research Laboratory, Technion-Israel Institute of Technology, Haifa
Israel

Important: This press release accompanies both a presentation and an ESC press conference given at the ESC Congress 2003. Written by the investigator himself/herself, this press release does not necessarily reflect the opinion of the European Society of Cardiology

Camilla Dormer | alfa
Further information:
http://www.escardio.org

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>