Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noninvasive Coronary Imaging

02.09.2003


ESC Congress 2003: Picture Perfect – Progress in non-invasive imaging



There has been increasing awareness of the importance of composition of athero-thrombotic plaque as a major risk factor for acute coronary syndromes. Several invasive and noninvasive imaging techniques are available to assess athero-thrombotic vessels.

Most of the standard techniques identify luminal diameter or stenosis, wall thickness, or plaque volume (such as multi-slice CT, angiography, IVUS, etc.); however, none are effective in determining the plaques that are unstable and vulnerable to thrombosis and proliferation. In vivo, high-resolution, multi-contrast, magnetic resonance imaging (MRI) holds the best promise of non-invasively imaging vulnerable plaques and determination of the different plaque components such as lipid core, fibrosis, calcifications and thrombosis deposits in all arteries including the coronary arteries.


The MR findings have been extensively validated against pathology in ex vivo studies of carotid, aortic, and coronary artery specimens obtained at autopsy. Subsequent work on imaging carotid arteries in vivo in patients referred for endarterectomy showed a high correlation with pathology and with previous ex vivo results.

A recent study in patients with plaques in the thoracic aorta showed that when compared to transesophageal echocardiography, plaque composition and size are accurately characterized and measured using in vivo MRI. Carotid and aortic athero-thrombotic plaque assessment by MRI may lend itself to use as a screening tool for prediction of future cardiovascular events and for the evaluation of therapeutic intervention benefits.

These MR techniques have been also adapted for the study of plaques in different animal models. Therefore, MRI can be used as an investigative to follow in vivo progression, regression and plaque stabilization in different transgenic and non-transgenic animal models.

The ultimate goal is imaging of plaque in vivo in human coronary arteries. Preliminary studies in a porcine model of athero-thrombosis showed that the major difficulties of MR coronary wall imaging are due to the combination of cardiac and respiratory motion artifacts, the non-linear course of the coronary arteries, as well as their relatively small size and location.

Studies in an in-vivo pig model and in humans suggest that MRI may soon be applicable to study and characterize athero-thrombotic plaques in human coronaries in vivo. We have shown recently the utility of MRI in the study of treatment in humans. MR was used to measure the effect of lipid-lowering therapy (statins) in asymptomatic untreated hypercholesterolemic patients with carotid and aortic atherosclerosis.

In conclusion, the assessment of athero-thrombotic plaques by imaging techniques is essential for the identification of vulnerable plaques. In vivo, high-resolution, multi-contrast, MRI holds the best promise of non-invasively imaging vulnerable plaques and characterizing the different components in all arteries including the coronary arteries. MR allows serial evaluation assessment of the progression and regression of atherosclerosis over time. The use of specific MR contrast agents targeted for athero-thrombotic plaque imaging may enhance the plaque characterization. Application of MRI opens new areas for diagnosis, prevention, and treatment (e.g., lipid-lowering drug regimens) of athero-thrombosis in all arterial locations.

Roberto Corti, MD
Cardiology, University Hospital Zurich
Switzerland

Important: This press release accompanies both a presentation and an ESC press conference given at the ESC Congress 2003. Written by the investigator himself/herself, this press release does not necessarily reflect the opinion of the European Society of Cardiology


Camilla Dormer | alfa
Further information:
http://www.escardio.org

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>