Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone marrow cells to repair myocardial infarction

01.09.2003


Are they really capable of replacing injured cells and reducing infarct size?



The new concept of cell transplantation has been addressed by two recent human investigations. Bone marrow cells of the patient are injected into the coronary circulation about one week after myocardial infarct to replace the injured cells and reduce the infarct size. This intervention seemed to be successful to reduce the contractile malefunction after myocardial infarction. The background of this observation is the new concept derived from animal experiments that some of adult bone marrow cells can home in the heart and then transdifferentiate to myocardial cells. Therefore, our goal in the present investigation was to repeat these clinical investigations in patients with large anterior myocardial infarcts.

Once the patients came into the hospital with an acute myocardial infarct the occluded vessel was mechanically recanalized with a balloon catheter to restore the blood flow instantly and the occlusion area was protected with a coronary stent.
Although blood flow is then re-established – due to the interruption of blood flow for several hours – many cells are dying and a myocardial scar is developing. Therefore, after 7 days 30 ml of bone marrow was drawn from a puncture of a hip bone and a certain subset of the cells (monocytic cells) were separated to a final volume of a about 8 – 10 ml containing 2.2 x 107 monocytic bone marrow cells. By a second catheterisation these cells were transferred into the coronary circulation over a balloon catheter into the injured tissue. The regional contractile force, the global contractile force and the regional coronary blood flow was measured at 3 month and 1 year after cell injection.



Contradictory to the previous investigations, our experiments in large myocardial infarcts do not demonstrate regional or global contractile improvement at 3 month and 1 year.

Therefore, the concept that patients bone marrow cells might replace injured myocardial cells and reduce infarct size can not be confirmed in patients with large myocardial infarctions.

Prof. Dr. Med. Hans R. Figulla
Friedrich-Schiller-University Jena, Germany

IMPORTANT: This press release accompanies a poster or oral session given at the ESC Congress 2003. Written by the investigator himself/herself, this press release does not necessarily reflect the opinion of the European Society of Cardiology
ESC Congress 2003: The heart is incapable of cardiocell regeneration after myocardial infarction or other injuries. After an acute myocardial infarction, non contractile scar tissue will develop with regional malefunction which may finally result in heart failure. Present treatment options include recanalization of the occluded coronary vessel to reduce the amount of injured cells and tailored medical therapy for heart failure. So far, common treatment has been unable to replace the scar tissue by contracting myocardial cells.

Camilla Dormer | alfa
Further information:
http://www.escardio.org

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>