Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone marrow cells to repair myocardial infarction

01.09.2003


Are they really capable of replacing injured cells and reducing infarct size?



The new concept of cell transplantation has been addressed by two recent human investigations. Bone marrow cells of the patient are injected into the coronary circulation about one week after myocardial infarct to replace the injured cells and reduce the infarct size. This intervention seemed to be successful to reduce the contractile malefunction after myocardial infarction. The background of this observation is the new concept derived from animal experiments that some of adult bone marrow cells can home in the heart and then transdifferentiate to myocardial cells. Therefore, our goal in the present investigation was to repeat these clinical investigations in patients with large anterior myocardial infarcts.

Once the patients came into the hospital with an acute myocardial infarct the occluded vessel was mechanically recanalized with a balloon catheter to restore the blood flow instantly and the occlusion area was protected with a coronary stent.
Although blood flow is then re-established – due to the interruption of blood flow for several hours – many cells are dying and a myocardial scar is developing. Therefore, after 7 days 30 ml of bone marrow was drawn from a puncture of a hip bone and a certain subset of the cells (monocytic cells) were separated to a final volume of a about 8 – 10 ml containing 2.2 x 107 monocytic bone marrow cells. By a second catheterisation these cells were transferred into the coronary circulation over a balloon catheter into the injured tissue. The regional contractile force, the global contractile force and the regional coronary blood flow was measured at 3 month and 1 year after cell injection.



Contradictory to the previous investigations, our experiments in large myocardial infarcts do not demonstrate regional or global contractile improvement at 3 month and 1 year.

Therefore, the concept that patients bone marrow cells might replace injured myocardial cells and reduce infarct size can not be confirmed in patients with large myocardial infarctions.

Prof. Dr. Med. Hans R. Figulla
Friedrich-Schiller-University Jena, Germany

IMPORTANT: This press release accompanies a poster or oral session given at the ESC Congress 2003. Written by the investigator himself/herself, this press release does not necessarily reflect the opinion of the European Society of Cardiology
ESC Congress 2003: The heart is incapable of cardiocell regeneration after myocardial infarction or other injuries. After an acute myocardial infarction, non contractile scar tissue will develop with regional malefunction which may finally result in heart failure. Present treatment options include recanalization of the occluded coronary vessel to reduce the amount of injured cells and tailored medical therapy for heart failure. So far, common treatment has been unable to replace the scar tissue by contracting myocardial cells.

Camilla Dormer | alfa
Further information:
http://www.escardio.org

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>