Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone marrow cells to repair myocardial infarction

01.09.2003


Are they really capable of replacing injured cells and reducing infarct size?



The new concept of cell transplantation has been addressed by two recent human investigations. Bone marrow cells of the patient are injected into the coronary circulation about one week after myocardial infarct to replace the injured cells and reduce the infarct size. This intervention seemed to be successful to reduce the contractile malefunction after myocardial infarction. The background of this observation is the new concept derived from animal experiments that some of adult bone marrow cells can home in the heart and then transdifferentiate to myocardial cells. Therefore, our goal in the present investigation was to repeat these clinical investigations in patients with large anterior myocardial infarcts.

Once the patients came into the hospital with an acute myocardial infarct the occluded vessel was mechanically recanalized with a balloon catheter to restore the blood flow instantly and the occlusion area was protected with a coronary stent.
Although blood flow is then re-established – due to the interruption of blood flow for several hours – many cells are dying and a myocardial scar is developing. Therefore, after 7 days 30 ml of bone marrow was drawn from a puncture of a hip bone and a certain subset of the cells (monocytic cells) were separated to a final volume of a about 8 – 10 ml containing 2.2 x 107 monocytic bone marrow cells. By a second catheterisation these cells were transferred into the coronary circulation over a balloon catheter into the injured tissue. The regional contractile force, the global contractile force and the regional coronary blood flow was measured at 3 month and 1 year after cell injection.



Contradictory to the previous investigations, our experiments in large myocardial infarcts do not demonstrate regional or global contractile improvement at 3 month and 1 year.

Therefore, the concept that patients bone marrow cells might replace injured myocardial cells and reduce infarct size can not be confirmed in patients with large myocardial infarctions.

Prof. Dr. Med. Hans R. Figulla
Friedrich-Schiller-University Jena, Germany

IMPORTANT: This press release accompanies a poster or oral session given at the ESC Congress 2003. Written by the investigator himself/herself, this press release does not necessarily reflect the opinion of the European Society of Cardiology
ESC Congress 2003: The heart is incapable of cardiocell regeneration after myocardial infarction or other injuries. After an acute myocardial infarction, non contractile scar tissue will develop with regional malefunction which may finally result in heart failure. Present treatment options include recanalization of the occluded coronary vessel to reduce the amount of injured cells and tailored medical therapy for heart failure. So far, common treatment has been unable to replace the scar tissue by contracting myocardial cells.

Camilla Dormer | alfa
Further information:
http://www.escardio.org

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>