Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone marrow cells to repair myocardial infarction

01.09.2003


Are they really capable of replacing injured cells and reducing infarct size?



The new concept of cell transplantation has been addressed by two recent human investigations. Bone marrow cells of the patient are injected into the coronary circulation about one week after myocardial infarct to replace the injured cells and reduce the infarct size. This intervention seemed to be successful to reduce the contractile malefunction after myocardial infarction. The background of this observation is the new concept derived from animal experiments that some of adult bone marrow cells can home in the heart and then transdifferentiate to myocardial cells. Therefore, our goal in the present investigation was to repeat these clinical investigations in patients with large anterior myocardial infarcts.

Once the patients came into the hospital with an acute myocardial infarct the occluded vessel was mechanically recanalized with a balloon catheter to restore the blood flow instantly and the occlusion area was protected with a coronary stent.
Although blood flow is then re-established – due to the interruption of blood flow for several hours – many cells are dying and a myocardial scar is developing. Therefore, after 7 days 30 ml of bone marrow was drawn from a puncture of a hip bone and a certain subset of the cells (monocytic cells) were separated to a final volume of a about 8 – 10 ml containing 2.2 x 107 monocytic bone marrow cells. By a second catheterisation these cells were transferred into the coronary circulation over a balloon catheter into the injured tissue. The regional contractile force, the global contractile force and the regional coronary blood flow was measured at 3 month and 1 year after cell injection.



Contradictory to the previous investigations, our experiments in large myocardial infarcts do not demonstrate regional or global contractile improvement at 3 month and 1 year.

Therefore, the concept that patients bone marrow cells might replace injured myocardial cells and reduce infarct size can not be confirmed in patients with large myocardial infarctions.

Prof. Dr. Med. Hans R. Figulla
Friedrich-Schiller-University Jena, Germany

IMPORTANT: This press release accompanies a poster or oral session given at the ESC Congress 2003. Written by the investigator himself/herself, this press release does not necessarily reflect the opinion of the European Society of Cardiology
ESC Congress 2003: The heart is incapable of cardiocell regeneration after myocardial infarction or other injuries. After an acute myocardial infarction, non contractile scar tissue will develop with regional malefunction which may finally result in heart failure. Present treatment options include recanalization of the occluded coronary vessel to reduce the amount of injured cells and tailored medical therapy for heart failure. So far, common treatment has been unable to replace the scar tissue by contracting myocardial cells.

Camilla Dormer | alfa
Further information:
http://www.escardio.org

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>