Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic researchers discover that donor kidney protects itself in new body

26.08.2003


A long-standing medical discussion about how transplanted organs survive in a new body has received provocative new evidence from Mayo Clinic research. It shows a donated kidney survives in a new body by turning on a protective mechanism to shield it from the hostile environment of the patient’s immune system. The results are published in this month’s American Journal of Transplantation.



Says Mark Stegall, M.D., head of the transplant team that studied kidney genes’ response to transplantation, "The big question has always been: Why don’t the antibodies injure the kidney? Our study begins to show one possible reason for that -- there’s a protective mechanism at work."

In the study, the Mayo Clinic team analyzed which genes are turned on during the biological phenomenon known as "accommodation" -- the process by which a transplanted organ adapts to the new environment of the donor’s body. Accommodation was first described 20 years ago by Jeffrey Platt, M.D., a Mayo Clinic transplant biologist and co-author of this current Mayo Clinic study.


James Gloor, M.D., a Mayo Clinic nephrologist and research team member, describes the significance of the work this way: "It’s not that the recipient’s immune system fails to see the organ; it’s more that the organ, in some way, can turn on this protection that allows it to inhabit this otherwise hostile environment of a new body."

An Accommodation Analogy: Calluses and Blisters

Transplant surgeons want to get to the heart of the accommodation mechanism so they can manipulate it most effectively and gently. Their goal is to provide the patient maximum benefit in a transplant with the least side effects.

Says Dr. Gloor, "In biology, most of the time the body can protect itself from a variety of things." He offers the example of how feet protect themselves from the friction of new shoes that cause blisters by producing protective skin thickenings: calluses. "Once your feet have calluses, you can walk around with your shoes and you don’t develop blisters anymore. The reason you can is that your foot has accommodated to that hostile environment," he says.

Drs. Stegall and Gloor say a similar protective response appears to occur during kidney transplantation. For example, when one kidney is removed from the donor, that leaves the donor with a single functioning kidney which senses that it needs to do more work. "We can see it will get bigger so it can do more work. It’s compensating for the fact that it’s the only one there,’’ Dr. Gloor explains.

The Experiment

To try to observe the mechanisms at work in accommodation, the Mayo Clinic team used a molecular biological technique that allowed them to look at which genes were expressed in kidney transplants in which the donor’s and patient’s immune systems were compatible. They then contrasted the compatible-transplant gene expression patterns with genes expressed in kidney transplants that were immunologically incompatible.

The Results

Different gene-expression patterns occurred in different situations. Says Dr. Stegall, "We found that there was a wide array of entirely different genes turned on -- or turned off -- in the incompatible transplants that were not changed in regular kidney transplants. It implies that something is happening in the incompatible kidney. From the results, it seems likely that the kidney is ’accommodating’ to the otherwise destructive antibodies by developing processes that actually protect it." Accommodation, he adds, may actually be a fairly general phenomenon present in a variety of human diseases.



Contact:
Sara Lee
507-284-5005 (days)
507-284-2511 (evenings)
e-mail: newsbureau@mayo.edu

Sara Lee | EurekAlert!
Further information:
http://www.mayo.edu/

More articles from Health and Medicine:

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>