Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New principle guides memory dynamics

22.08.2003


Weizmann Institute finding may lead to new treatments for psychological trauma



Is it possible to intentionally forget specific memories, without affecting other memories? Many would undoubtedly be happy to learn that unpleasant memories might be erased. This ability could be especially significant when it comes to the kind of traumatic memories that are debilitating to those experiencing them. It may well be that in the future, we will be able to wipe out, or at least dim, certain types of memories with controlled accuracy. A new fundamental rule governing the workings of the brain, recently discovered by a team of scientists in the Weizmann Institute of Science, headed by Prof. Yadin Dudai of the Neurobiology Department, constitutes a step towards reaching this goal.

Every memory that we acquire undergoes a "ripening" process (called consolidation) immediately after it is formed. In this process, it becomes impervious to outside stimulation or drugs that would obliterate it. Until recently, the accepted dogma was that for each separate item of memory, consolidation occurs just once, after which the time window that allows for "memory erasing" closes (usually about an hour or two after the memory is acquired).


However, evidence has lately come to light that a memory is open to disruption for a short period following each time this memory is recalled. If this is true, it means that it would be possible to recall a memory and, immediately after the act of remembering, to activate a "memory eraser" and wipe it out, even though years may have passed since the original memory was formed.

Research into the subject took place in leading labs around the world, but the results were indecisive, as in some cases it was found possible to erase old memories upon recall, while in others no evidence for this was found.

Prof. Dudai’s group have now identified a new principle guiding the activity of the brain’s memory systems, which sheds light on how memories are recalled and stabilized, and which can explain the puzzling discrepancies in the findings.

This principle delineates the conditions in which the recalled memory becomes re-sensitized to the activity of the "memory erasers." In order to understand the rule, think of the bits of information stored in our memories, each with many associations, some of which conflict with others. For instance, a certain food can bring up memories of taste – delicious or disagreeable; a person can be remembered in pleasant or unpleasant contexts, and so on.

When we next taste the food or see the person, all of the associated memories are called up in the blink of an eye, but in the end, only one of those memories will dictate our reaction (e.g. become dominant.) This memory will decide whether we will eat the food or reject it, or whether we will smile at our acquaintance or ignore him.

Prof. Dudai’s team found that only that recalled memory that won the competition for dominance was re-exposed to the time window of sensitivity to memory erasers, and it is this memory that must be consolidated once again before being reinstalled in the long-term memory.

In other words, the winner, in the appropriate circumstances, may lose all. Put succinctly, one can say the stability of the recalled memory is inversely correlated with its dominance. This discovery is likely to assist in the future in developing new methods of wiping out unwanted memories, and thus of treating some kinds of psychological trauma.

Research that deals with the physical basis of the processes and mechanisms of memory, especially those that involve chemical or other intervention, relies on animal subjects. Prof. Dudai and his team carried out their research with rats and fish, which are especially suited for this type of research. The rats learned to remember flavors; the fish learned to remember flashes of light, and in both instances, the animals were trained to associate them with conflicting memories. That is, the tastes were sometimes good and sometimes bad, and the light sometimes signaled danger and sometimes didn’t.

In both species, it was possible to show that the dominant memory – that which won out over other associated memories and determined subsequent behavior – was the only one that could be erased by giving the appropriate drug within a few minutes of the memory’s recall. The fact that the closer we get to the "basic hardware" of memory, the more similarities exist between different animals, including humans, paves the way to the possibility that certain drugs found to be effective in eliminating memories in animals will also work on humans. Studies on humans, however, are yet to be conducted.

The results of the study were published today in the scientific journal Science. Other than Prof. Dudai, participating in the study were research students Mark Eisenberg, Tali Kobilo, and Diego Berman.

Prof. Yadin Dudai’s research is supported by: Abe and Kathryn Selsky Foundation; Nella and Leon Benoziyo Center for Neurosciences; Lester Crown Brain Research Fund; Abramson Family Brain Research Program; Carl and Michaela Einhorn-Dominic Brain Research Institute; and Murray H. & Meyer Grodetsky Center for Research of Higher Brain Functions.

Prof. Dudai holds the Sara and Michael Sela Professorial Chair of Neurobiology.


###
The Weizmann Institute of Science, in Rehovot, Israel, is one of the world’s foremost centers of scientific research and graduate study. Its 2,500 scientists, students, technicians, and engineers pursue basic research in the quest for knowledge and the enhancement of humanity. New ways of fighting disease and hunger, protecting the environment, and harnessing alternative sources of energy are high priorities at Weizmann.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>