Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify second gene responsible for rare syndrome associated with skeletal defects

18.08.2003


UT Southwestern Medical Center at Dallas researchers have discovered a second gene responsible for a rare syndrome that causes the loss of bone from the lower jaw, fingers, toes and collarbone.



The researchers isolated the gene, zinc metalloproteinase (ZMPSTE24), in a patient who had all of the classic characteristics of mandibuloacral dysplasia (MAD) but did not have a mutation in the LMNA gene, previously reported as a cause of the disorder.

In addition to causing MAD, mutations in this newly discovered gene may also lead to progeroid features, or premature aging, generalized loss of body fat and early death, the researchers report. The study appears in today’s publication of the journal Human Molecular Genetics and also is available online.


"It was known that a mutation in LMNA caused MAD, but in several of the individuals that we studied LMNA was normal," said Dr. Abhimanyu Garg, professor of internal medicine and the study’s senior author. "This led us to look at other genes that were associated with lamin A production. We considered ZMPSTE24 as a candidate gene based on recent reports that deletion of this gene in mice resulted in the development of similar physical features of the human form of MAD."

The LMNA gene encodes two proteins, lamin A and lamin C, which are components of the membrane of the cell nucleus. The zinc metalloproteinase enzyme is essential for producing the active form of lamin A. Besides MAD, LMNA mutations are linked to several conditions including a body-fat disorder called familial partial lipodystrophy, muscular dystrophy, cardiomyopathy and a premature aging disorder called progeria.

"It is likely that minor changes in these genes may predispose individuals to premature aging, a change of body-fat distribution, as well as osteoporosis," said Dr. Garg.

The researchers studied six individuals with MAD and found a mutation in LMNA in two. Of the remaining four individuals, who did not have a mutation in the LMNA gene, one was found to have mutations in ZMPSTE24. Dr. Garg is currently searching for mutations in other genes that are involved in processing of lamin A in three of the patients who did not have mutations in either LMNA or ZMPSTE24.


Other researchers contributing to the study were Dr. Anil Agarwal, assistant professor of internal medicine and lead author of the study, and Dr. Richard Auchus, assistant professor of internal medicine, both from UT Southwestern; and a scientist from the University Hospital of Leuven in Belgium.

The study was funded by the National Institutes of Health and Southwestern Medical Foundation.

Amy Shields | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Health and Medicine:

nachricht Usher syndrome: Gene therapy restores hearing and balance
25.09.2017 | Institut Pasteur

nachricht MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer
25.09.2017 | Case Western Reserve University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>