Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify second gene responsible for rare syndrome associated with skeletal defects

18.08.2003


UT Southwestern Medical Center at Dallas researchers have discovered a second gene responsible for a rare syndrome that causes the loss of bone from the lower jaw, fingers, toes and collarbone.



The researchers isolated the gene, zinc metalloproteinase (ZMPSTE24), in a patient who had all of the classic characteristics of mandibuloacral dysplasia (MAD) but did not have a mutation in the LMNA gene, previously reported as a cause of the disorder.

In addition to causing MAD, mutations in this newly discovered gene may also lead to progeroid features, or premature aging, generalized loss of body fat and early death, the researchers report. The study appears in today’s publication of the journal Human Molecular Genetics and also is available online.


"It was known that a mutation in LMNA caused MAD, but in several of the individuals that we studied LMNA was normal," said Dr. Abhimanyu Garg, professor of internal medicine and the study’s senior author. "This led us to look at other genes that were associated with lamin A production. We considered ZMPSTE24 as a candidate gene based on recent reports that deletion of this gene in mice resulted in the development of similar physical features of the human form of MAD."

The LMNA gene encodes two proteins, lamin A and lamin C, which are components of the membrane of the cell nucleus. The zinc metalloproteinase enzyme is essential for producing the active form of lamin A. Besides MAD, LMNA mutations are linked to several conditions including a body-fat disorder called familial partial lipodystrophy, muscular dystrophy, cardiomyopathy and a premature aging disorder called progeria.

"It is likely that minor changes in these genes may predispose individuals to premature aging, a change of body-fat distribution, as well as osteoporosis," said Dr. Garg.

The researchers studied six individuals with MAD and found a mutation in LMNA in two. Of the remaining four individuals, who did not have a mutation in the LMNA gene, one was found to have mutations in ZMPSTE24. Dr. Garg is currently searching for mutations in other genes that are involved in processing of lamin A in three of the patients who did not have mutations in either LMNA or ZMPSTE24.


Other researchers contributing to the study were Dr. Anil Agarwal, assistant professor of internal medicine and lead author of the study, and Dr. Richard Auchus, assistant professor of internal medicine, both from UT Southwestern; and a scientist from the University Hospital of Leuven in Belgium.

The study was funded by the National Institutes of Health and Southwestern Medical Foundation.

Amy Shields | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>