Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify second gene responsible for rare syndrome associated with skeletal defects

18.08.2003


UT Southwestern Medical Center at Dallas researchers have discovered a second gene responsible for a rare syndrome that causes the loss of bone from the lower jaw, fingers, toes and collarbone.



The researchers isolated the gene, zinc metalloproteinase (ZMPSTE24), in a patient who had all of the classic characteristics of mandibuloacral dysplasia (MAD) but did not have a mutation in the LMNA gene, previously reported as a cause of the disorder.

In addition to causing MAD, mutations in this newly discovered gene may also lead to progeroid features, or premature aging, generalized loss of body fat and early death, the researchers report. The study appears in today’s publication of the journal Human Molecular Genetics and also is available online.


"It was known that a mutation in LMNA caused MAD, but in several of the individuals that we studied LMNA was normal," said Dr. Abhimanyu Garg, professor of internal medicine and the study’s senior author. "This led us to look at other genes that were associated with lamin A production. We considered ZMPSTE24 as a candidate gene based on recent reports that deletion of this gene in mice resulted in the development of similar physical features of the human form of MAD."

The LMNA gene encodes two proteins, lamin A and lamin C, which are components of the membrane of the cell nucleus. The zinc metalloproteinase enzyme is essential for producing the active form of lamin A. Besides MAD, LMNA mutations are linked to several conditions including a body-fat disorder called familial partial lipodystrophy, muscular dystrophy, cardiomyopathy and a premature aging disorder called progeria.

"It is likely that minor changes in these genes may predispose individuals to premature aging, a change of body-fat distribution, as well as osteoporosis," said Dr. Garg.

The researchers studied six individuals with MAD and found a mutation in LMNA in two. Of the remaining four individuals, who did not have a mutation in the LMNA gene, one was found to have mutations in ZMPSTE24. Dr. Garg is currently searching for mutations in other genes that are involved in processing of lamin A in three of the patients who did not have mutations in either LMNA or ZMPSTE24.


Other researchers contributing to the study were Dr. Anil Agarwal, assistant professor of internal medicine and lead author of the study, and Dr. Richard Auchus, assistant professor of internal medicine, both from UT Southwestern; and a scientist from the University Hospital of Leuven in Belgium.

The study was funded by the National Institutes of Health and Southwestern Medical Foundation.

Amy Shields | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>