Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem-cell defect underlies common genetic disorder

15.08.2003


Howard Hughes Medical Institute researchers have found that Hirschsprung disease, one of the most common genetic disorders, is caused by a defect that blocks neural stem cells from forming nerves that control the lower intestine.



Hirschsprung disease occurs in one in 5,000 live births and causes a potentially fatal disorder that prevents the proper transport of food through the gut. The new findings suggest that it might one day be possible to correct the disease by transplanting neural stem cells from a different part of the gut.

Neural crest stem cells (NCSCs) are cells that mature into neurons and supporting neural cells found in the gut. The studies provide important general insight into how stem cells -- the immature cells that can develop into mature nerve and other cells -- are controlled. While the properties of stem cells have been widely studied, relatively little is known about how they are regulated during development.


The researchers, led by Howard Hughes Medical Institute (HHMI) investigator Sean J. Morrison, HHMI associate Toshihide Iwashita, and graduate student Eve Kruger at the University of Michigan, published their findings in the August 15, 2003, issue of Science.

"Some of the genetic mutations that cause Hirschsprung have been identified, but they explain only about half the cases," said Morrison. "Our work identifies new genes whose mutations might underlie the disease. We’ve found the mechanism by which one type of mutation impairs the function of the neural crest stem cells that give rise to the enteric nervous system."

The researchers began by conducting a global comparison of genes expressed in whole mouse fetuses with those genes expressed only in the fetal gut NCSCs. To make this comparison, they applied RNA extracts from the two sources to microarrays, or "gene chips," which are arrays of thousands of gene probes that can signal the activity of specific genes. Using this process, the researchers found that the ten genes that were most highly expressed in the gut NCSCs relative to the whole fetus, included four that had already been linked to Hirschsprung disease in humans.

"This finding was exciting because if four of our top ten genes have already been implicated in Hirschsprung disease, it’s an attractive hypothesis that some of the other genes we found upregulated could also cause the disorder when mutated," said Morrison.

Subsequent studies by Morrison and his colleagues focused on understanding the function of one of the identified genes, called Ret. They chose Ret because it is known to code for a receptor protein that enables stem cells to respond to a neuronal guidance protein called GDNF (glial-derived neurotrophic factor). Mutations in either Ret or GDNF genes had already been shown to cause Hirschsprung disease in both humans and mice, said Morrison.

Using antibody markers and NCSC cultures, the researchers confirmed that Ret proteins were expressed on the surface of stem cells and that the Ret receptor was required for the migration of the stem cells in response to GDNF in culture.

To test whether the loss of Ret prevented normal NCSC migration in the gut, the researchers examined the behavior of the NCSCs in the guts of Ret-deficient mice. These experiments revealed a dramatic decrease in the migration of NCSCs in the animals’ guts.

"Until this work, what was missing was whether these molecular pathways act within neural crest stem cells to promote migration," said Morrison. "Our finding that these pathways are all expressed in neural crest stem cells and that they regulate the function of the cells, provides a cellular locus for people to study directly how those pathways interact."

Morrison also speculated that the research could have implications for correcting the genetic defect underlying Hirschsprung disease. "Our findings suggest that in people with mutations in Ret, the primary reason the enteric nervous system doesn’t form in the hindgut is because neural crest stem cells just never migrate into the hindgut. Perhaps we can bypass that migratory defect by taking stem cells from the foregut, expanding them in culture, and then transplanting them into the hindgut."

Morrison emphasized that the findings demonstrate the value of a relatively new approach that uses microarrays for identifying activated genes and then knocking out those activated genes in mice to determine how those genes regulate stem cell function. "We think that this represents a powerful combination for getting important insights into the causes of other types of birth defects or other types of diseases," he said.

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org/

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>