Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monitoring malaria: Genomic activity of the parasite in human blood cells

14.08.2003


Every year, malaria kills as many as 2.5 million people. Ninety percent of these deaths occur in sub-Saharan Africa, and most are children. While four species of the single-celled organism Plasmodium cause malaria, Plasmodium falciparum is the deadliest. Harbored in mosquito saliva, the parasite infects its human host as the mosquito feeds on the victim’s blood. Efforts to control the disease have taken on an increased sense of urgency, as more P. falciparum strains show resistance to anti-malarial drugs. To develop new drugs and vaccines that disable the parasite, researchers need a better understanding of the regulatory mechanisms that drive the malarial life cycle. In an article that will appear in the inaugural issue of PLoS Biology (and currently available online at (http://www.plos.org/downloads/malaria_plosbiology.pdf), Joseph DeRisi and colleagues provide the first comprehensive molecular analysis of a key phase of the parasite’s life cycle.



While P. falciparum is a single-celled eukaryotic (nucleated) organism, it leads a fairly complicated life, assuming one form in the mosquito, another when it invades the human liver, and still another in human red blood cells (erythrocytes). The intraerythrocytic developmental cycle (IDC) is the stage of the P. falciparum life cycle associated with the clinical symptoms of malaria. Using data from the recently sequenced P. falciparum genome, the researchers have tracked the expression of all of the parasite’s genes during the IDC.

The pattern of gene expression (which can be thought of as the internal operating system of the cell) during the IDC is strikingly simple. It’s continuous and clock-like progression of gene activation is reminiscent of much simple life forms – such as a virus or phage – while unprecedented for a free living organism. Virus and phage behave like a "just in time" assembly line: components are made only as needed, and only in the amount that is needed. In this respect, malaria resembles a glorified virus.


Given the remarkable coupling of the timing of gene activation with gene function as shown here, this understanding could help identify the biological function of the 60 percent of genes in P. falciparum that encode proteins of unknown function.

P. falciparum appears to be ultra-streamlined and exquisitely tuned to perform a single job: consume, replicate and invade. The simple program regulating the life of P. falciparum may hold the key to its downfall as any perturbation of the regulatory program will likely have dire consequences for the parasite. This offers renewed hope for the design of inhibitory drugs targeted at the regulatory machinery that would irreparably foul the parasite’s regulatory program, ultimately resulting in its death.


Research article: Bozdech Z, Llinás M, Pulliam BL, Wong ED, Zhu J, DeRisi JL (2003). The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum. DOI: 10.1371/journal.pbio.0000005

Barbara Cohen | EurekAlert!
Further information:
http://www.plos.org
http://www.plos.org/downloads/malaria_plosbiology.pdf

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>