Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monitoring malaria: Genomic activity of the parasite in human blood cells

14.08.2003


Every year, malaria kills as many as 2.5 million people. Ninety percent of these deaths occur in sub-Saharan Africa, and most are children. While four species of the single-celled organism Plasmodium cause malaria, Plasmodium falciparum is the deadliest. Harbored in mosquito saliva, the parasite infects its human host as the mosquito feeds on the victim’s blood. Efforts to control the disease have taken on an increased sense of urgency, as more P. falciparum strains show resistance to anti-malarial drugs. To develop new drugs and vaccines that disable the parasite, researchers need a better understanding of the regulatory mechanisms that drive the malarial life cycle. In an article that will appear in the inaugural issue of PLoS Biology (and currently available online at (http://www.plos.org/downloads/malaria_plosbiology.pdf), Joseph DeRisi and colleagues provide the first comprehensive molecular analysis of a key phase of the parasite’s life cycle.



While P. falciparum is a single-celled eukaryotic (nucleated) organism, it leads a fairly complicated life, assuming one form in the mosquito, another when it invades the human liver, and still another in human red blood cells (erythrocytes). The intraerythrocytic developmental cycle (IDC) is the stage of the P. falciparum life cycle associated with the clinical symptoms of malaria. Using data from the recently sequenced P. falciparum genome, the researchers have tracked the expression of all of the parasite’s genes during the IDC.

The pattern of gene expression (which can be thought of as the internal operating system of the cell) during the IDC is strikingly simple. It’s continuous and clock-like progression of gene activation is reminiscent of much simple life forms – such as a virus or phage – while unprecedented for a free living organism. Virus and phage behave like a "just in time" assembly line: components are made only as needed, and only in the amount that is needed. In this respect, malaria resembles a glorified virus.


Given the remarkable coupling of the timing of gene activation with gene function as shown here, this understanding could help identify the biological function of the 60 percent of genes in P. falciparum that encode proteins of unknown function.

P. falciparum appears to be ultra-streamlined and exquisitely tuned to perform a single job: consume, replicate and invade. The simple program regulating the life of P. falciparum may hold the key to its downfall as any perturbation of the regulatory program will likely have dire consequences for the parasite. This offers renewed hope for the design of inhibitory drugs targeted at the regulatory machinery that would irreparably foul the parasite’s regulatory program, ultimately resulting in its death.


Research article: Bozdech Z, Llinás M, Pulliam BL, Wong ED, Zhu J, DeRisi JL (2003). The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum. DOI: 10.1371/journal.pbio.0000005

Barbara Cohen | EurekAlert!
Further information:
http://www.plos.org
http://www.plos.org/downloads/malaria_plosbiology.pdf

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>