Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infants More Vulnerable to Serious Brain Injury From Falling Than Previously Thought

13.08.2003


Babies are more vulnerable to serious head injury during a fall than had been previously thought, according to new research that may also begin to help child abuse investigators distinguish between accidental and intentional injury.



Whitaker investigator Susan Margulies of the University of Pennsylvania found that rotational forces generated by a baby’s head hitting a hard surface can cause widespread, potentially serious brain injury. This can include internal bleeding, which can damage tissue and alter brain function, and nerve cell damage, which can impair thinking, sensation, and other mental functions.

Infant falls are often dismissed as relatively benign because the head is assumed to be moving in a straight line at impact, Margulies said. Linear motions are associated with such localized injuries as skull fractures.


Rotational movements, however, can produce more widespread and serious brain injury. "We found that when the head contacted a firm surface before the body, significant rotational motions were produced," Margulies said. Her study was published in the July issue of the Journal of Neurosurgery.

These findings may also help distinguish between accidental falls and injury sustained by intentionally striking a child’s head against a hard surface, although more research is needed before such results could make a clear difference in abuse investigations.

"Traumatic brain injury is the most common cause of death in childhood, and child abuse is believed to be responsible for at least half of infant brain injuries," Margulies said. "While accidental falls are a frequent cause of pediatric trauma, they are also a common explanation given by caretakers in suspected abuse cases."

Margulies and her colleagues used an infant "crash test dummy" to measure rotational forces, which are rapid changes in velocity as the head contacts a hard surface and then violently rebounds. The lifelike doll resembling a 6-week-old infant is equipped with sensors to measure rotational velocity and acceleration. These forces increase with higher falls and harder surfaces.

The doll was suspended from a scaffold and allowed to fall 134 times from heights of 1, 3 and 5 feet onto surfaces commonly found in a home: a concrete floor, .25-inch-thick carpet padding, and a 4-inch-thick foam pad, simulating a crib mattress. Volunteers also shook the doll vigorously and struck its head against each of the three surfaces.

The 5-foot-fall onto concrete produced enough force to cause serious brain injury, the researchers found. But intentional head strikes onto hard surfaces produced significantly greater force.

"Based on this evidence, our data suggest that inflicted impacts are much more likely than falls or shaking to lead to brain injury," Margulies said. These injuries could include internal bleeding and prolonged or permanent nerve damage.

There has been a widespread assumption that children are the physiological equivalent of miniature adults and are affected similarly in cases of head trauma. But Margulies and others are accumulating evidence that young children do not always respond to trauma the same way adults do.

"Learning more about pediatric brain injuries will help us develop protective devices -- helmets, playground surfaces, car seats -- that better meet their specific needs," she said.

Collaborators include Michael Prange and Brittany Coats of Pennsylvania and Ann-Christine Duhaime of Hitchcock Medical Center in Hanover, N.H. Margulies received a Whitaker Biomedical Engineering Research Grant in 1992 for work in the lung.



Frank Blanchard | The Whitaker Foundation
Further information:
http://www.whitaker.org/news/margulies2.html

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>