Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infants More Vulnerable to Serious Brain Injury From Falling Than Previously Thought

13.08.2003


Babies are more vulnerable to serious head injury during a fall than had been previously thought, according to new research that may also begin to help child abuse investigators distinguish between accidental and intentional injury.



Whitaker investigator Susan Margulies of the University of Pennsylvania found that rotational forces generated by a baby’s head hitting a hard surface can cause widespread, potentially serious brain injury. This can include internal bleeding, which can damage tissue and alter brain function, and nerve cell damage, which can impair thinking, sensation, and other mental functions.

Infant falls are often dismissed as relatively benign because the head is assumed to be moving in a straight line at impact, Margulies said. Linear motions are associated with such localized injuries as skull fractures.


Rotational movements, however, can produce more widespread and serious brain injury. "We found that when the head contacted a firm surface before the body, significant rotational motions were produced," Margulies said. Her study was published in the July issue of the Journal of Neurosurgery.

These findings may also help distinguish between accidental falls and injury sustained by intentionally striking a child’s head against a hard surface, although more research is needed before such results could make a clear difference in abuse investigations.

"Traumatic brain injury is the most common cause of death in childhood, and child abuse is believed to be responsible for at least half of infant brain injuries," Margulies said. "While accidental falls are a frequent cause of pediatric trauma, they are also a common explanation given by caretakers in suspected abuse cases."

Margulies and her colleagues used an infant "crash test dummy" to measure rotational forces, which are rapid changes in velocity as the head contacts a hard surface and then violently rebounds. The lifelike doll resembling a 6-week-old infant is equipped with sensors to measure rotational velocity and acceleration. These forces increase with higher falls and harder surfaces.

The doll was suspended from a scaffold and allowed to fall 134 times from heights of 1, 3 and 5 feet onto surfaces commonly found in a home: a concrete floor, .25-inch-thick carpet padding, and a 4-inch-thick foam pad, simulating a crib mattress. Volunteers also shook the doll vigorously and struck its head against each of the three surfaces.

The 5-foot-fall onto concrete produced enough force to cause serious brain injury, the researchers found. But intentional head strikes onto hard surfaces produced significantly greater force.

"Based on this evidence, our data suggest that inflicted impacts are much more likely than falls or shaking to lead to brain injury," Margulies said. These injuries could include internal bleeding and prolonged or permanent nerve damage.

There has been a widespread assumption that children are the physiological equivalent of miniature adults and are affected similarly in cases of head trauma. But Margulies and others are accumulating evidence that young children do not always respond to trauma the same way adults do.

"Learning more about pediatric brain injuries will help us develop protective devices -- helmets, playground surfaces, car seats -- that better meet their specific needs," she said.

Collaborators include Michael Prange and Brittany Coats of Pennsylvania and Ann-Christine Duhaime of Hitchcock Medical Center in Hanover, N.H. Margulies received a Whitaker Biomedical Engineering Research Grant in 1992 for work in the lung.



Frank Blanchard | The Whitaker Foundation
Further information:
http://www.whitaker.org/news/margulies2.html

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>