Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Endostatin also effective on head and neck cancers

13.08.2003


Researchers at Ohio State found that endostatin has a dual effect on head and neck cancer cells – the compound prevented the cells from developing new blood vessels and also hindered the mechanism cancer cells use to migrate throughout the body and invade other tissues.


Susan Mallery



Head and neck cancers originate on the epithelium – the layer of tissue covering the outermost surfaces of the body, including the skin and mucus membranes. Kaposi’s sarcoma tumors arise from the endothelium, the cells that line blood vessels.

“The vast majority of endostatin studies have concentrated on endostatin’s effects against endothelial cells, and haven’t focused on the drug’s anti-tumorigenic possibilities,” said Susan Mallery, the study’s lead author and a professor in the Ohio State College of Dentistry’s department of oral and maxillofacial surgery and pathology.


“We wanted to explore other options for endostatin use,” she said.

After getting promising laboratory results with treating oral cavity tumor cells taken from men with oral cancer with endostatin, Mallery is suggesting the possibility of an implanted drug delivery system, one that could deliver endostatin directly to the site of a tumor after it was surgically removed.

“About half of all people with head and neck cancers die as a result of local disease recurrence,” Mallery said, adding that such cancers account for about 7 percent of all cancers in the United States. “Another major concern is patient compliance with follow-up treatment after the original tumor is removed.

“It’s possible that one day doctors could treat these patients with an implanted delivery device that dispenses a sustained, therapeutic drug concentration right where it is needed the most – where the tumor was,” she continued. “Such a treatment option not only provides a constant therapeutic drug level, it also eliminates concerns regarding patient compliance.”

In the current study, endostatin treatment reduced by half the number of invasive head and neck cancer cells, and also reduced the number of cells capable of migration by one-quarter. Migrating cells receive some sort of chemical signal before moving in a directed fashion throughout the body. Invasive cells migrate, but they also produce an enzyme that actually digests the membranes of the cells they’re trying to take over.

The research appears in a recent issue of the journal Anticancer Research.

Mallery and her colleagues received funding from the National Institutes of Health/National Institute of Dental and Craniofacial Research and from the Ohio Division of the American Cancer Society.


Contact: Susan Mallery, (614) 292 5892; Mallery.1@osu.edu
Written by Holly Wagner, (614) 292-8310; Wagner.235@osu.edu

Holly Wagner | Ohio State University
Further information:
http://www.osu.edu/researchnews/archive/hnendo.htm
http://www.iiar-anticancer.org/research/research_index.htm

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>