Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Trojan Clot-Buster: Drug-Coated Red Blood Cells Destroy Blood Clots From Within

12.08.2003


Thrombosis - the formation of internal blood clots - is a common cause of complications and even death following surgery. To create a better means of preventing thrombosis, researchers at University of Pennsylvania School of Medicine coated red blood cells (RBCs) with tissue plasminogen activator (tPA), a clot-dissolving drug commonly used as an emergency treatment for stroke. When given alone, tPA has a short life span in circulation and has the potential to cause serious bleeding as it diffuses out of the bloodstream. The RBC/tPA combo, however, lasts ten times longer in the bloodstream than free-floating tPA and decreases the likelihood of excess bleeding, according to a new study.



"The idea of coating red blood cells with tPA was to create a Trojan Horse, a vehicle for sneaking tPA into the bloodstream that could not only add to the drug’s longevity, but would also allow it to be incorporated into a growing blood clot. RBC/tPA can dissolve blood clots from within," said Vladimir R, Muzykantov, MD, PhD, associate professor in Penn’s Department of Pharmacology and author of the study. "Our research shows that the Trojan Horse approach converts tPA into a potent killer of nascent blood clots, one that would pose a much smaller risk of causing internal bleeding."

In the August issue of Nature Biotechnology, Muzykantov and his colleagues demonstrate in animal models how the marriage of red blood cells and tPA has the potential of safely preventing thrombosis following surgery and as a therapeutic for victims of heart attack or stoke.


"If developed for humans, the RBC/tPA method could provide an ideal way of delivering clot-busting drugs, with fewer side effects," said Muzykantov. "In theory, patients could donate blood before surgery and receive their own cells bound to tPA following surgery, providing a safer alternative to blood-thinning medication."

Research has shown that preventing thrombosis helps to reduce mortality and morbidity in many diseases. Unfortunately, current clot-busting drugs have the tendency to cause excessive bleeding, either by causing bleeding outside of the blood vessels or by removing pre-existing and, perhaps, beneficial blood clots. According to the Penn researchers, RCB/tPA spares existing blood clots and is too large to cause damage outside of the bloodstream.

To coat red blood cells with tPA, Muzykantov and his colleagues capitalized on the ’stickiness’ of streptavidin-biotin, a protein complex used in laboratories to study molecular interactions. Streptavidin forms an incredibly tight bond to a tiny molecule called biotin, so the researchers ’biotinylated’ tPA and RBCs and used streptavidin to link them together. According to the researchers, the technique may provide a safe way of extending the longevity and safety of drugs within the circulatory system.

"Red blood cells can travel hundreds of kilometers throughout the blood vessels during their 100-or so day life-span. That fact alone makes the idea of RBC-bound therapeutics very interesting," said Muzykantov. "Moreover, red blood cells are relatively large, which makes it very difficult for drugs bound to them to burrow their way out of the bloodstream where they could potentially do damage."

Greg Lester | University of Pennsylvania
Further information:
http://www.uphs.upenn.edu/news/News_Releases/august03/clotbuster.htm

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>