Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Trojan Clot-Buster: Drug-Coated Red Blood Cells Destroy Blood Clots From Within

12.08.2003


Thrombosis - the formation of internal blood clots - is a common cause of complications and even death following surgery. To create a better means of preventing thrombosis, researchers at University of Pennsylvania School of Medicine coated red blood cells (RBCs) with tissue plasminogen activator (tPA), a clot-dissolving drug commonly used as an emergency treatment for stroke. When given alone, tPA has a short life span in circulation and has the potential to cause serious bleeding as it diffuses out of the bloodstream. The RBC/tPA combo, however, lasts ten times longer in the bloodstream than free-floating tPA and decreases the likelihood of excess bleeding, according to a new study.



"The idea of coating red blood cells with tPA was to create a Trojan Horse, a vehicle for sneaking tPA into the bloodstream that could not only add to the drug’s longevity, but would also allow it to be incorporated into a growing blood clot. RBC/tPA can dissolve blood clots from within," said Vladimir R, Muzykantov, MD, PhD, associate professor in Penn’s Department of Pharmacology and author of the study. "Our research shows that the Trojan Horse approach converts tPA into a potent killer of nascent blood clots, one that would pose a much smaller risk of causing internal bleeding."

In the August issue of Nature Biotechnology, Muzykantov and his colleagues demonstrate in animal models how the marriage of red blood cells and tPA has the potential of safely preventing thrombosis following surgery and as a therapeutic for victims of heart attack or stoke.


"If developed for humans, the RBC/tPA method could provide an ideal way of delivering clot-busting drugs, with fewer side effects," said Muzykantov. "In theory, patients could donate blood before surgery and receive their own cells bound to tPA following surgery, providing a safer alternative to blood-thinning medication."

Research has shown that preventing thrombosis helps to reduce mortality and morbidity in many diseases. Unfortunately, current clot-busting drugs have the tendency to cause excessive bleeding, either by causing bleeding outside of the blood vessels or by removing pre-existing and, perhaps, beneficial blood clots. According to the Penn researchers, RCB/tPA spares existing blood clots and is too large to cause damage outside of the bloodstream.

To coat red blood cells with tPA, Muzykantov and his colleagues capitalized on the ’stickiness’ of streptavidin-biotin, a protein complex used in laboratories to study molecular interactions. Streptavidin forms an incredibly tight bond to a tiny molecule called biotin, so the researchers ’biotinylated’ tPA and RBCs and used streptavidin to link them together. According to the researchers, the technique may provide a safe way of extending the longevity and safety of drugs within the circulatory system.

"Red blood cells can travel hundreds of kilometers throughout the blood vessels during their 100-or so day life-span. That fact alone makes the idea of RBC-bound therapeutics very interesting," said Muzykantov. "Moreover, red blood cells are relatively large, which makes it very difficult for drugs bound to them to burrow their way out of the bloodstream where they could potentially do damage."

Greg Lester | University of Pennsylvania
Further information:
http://www.uphs.upenn.edu/news/News_Releases/august03/clotbuster.htm

More articles from Health and Medicine:

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

nachricht New vaccine production could improve flu shot accuracy
25.07.2017 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>