Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Trojan Clot-Buster: Drug-Coated Red Blood Cells Destroy Blood Clots From Within

12.08.2003


Thrombosis - the formation of internal blood clots - is a common cause of complications and even death following surgery. To create a better means of preventing thrombosis, researchers at University of Pennsylvania School of Medicine coated red blood cells (RBCs) with tissue plasminogen activator (tPA), a clot-dissolving drug commonly used as an emergency treatment for stroke. When given alone, tPA has a short life span in circulation and has the potential to cause serious bleeding as it diffuses out of the bloodstream. The RBC/tPA combo, however, lasts ten times longer in the bloodstream than free-floating tPA and decreases the likelihood of excess bleeding, according to a new study.



"The idea of coating red blood cells with tPA was to create a Trojan Horse, a vehicle for sneaking tPA into the bloodstream that could not only add to the drug’s longevity, but would also allow it to be incorporated into a growing blood clot. RBC/tPA can dissolve blood clots from within," said Vladimir R, Muzykantov, MD, PhD, associate professor in Penn’s Department of Pharmacology and author of the study. "Our research shows that the Trojan Horse approach converts tPA into a potent killer of nascent blood clots, one that would pose a much smaller risk of causing internal bleeding."

In the August issue of Nature Biotechnology, Muzykantov and his colleagues demonstrate in animal models how the marriage of red blood cells and tPA has the potential of safely preventing thrombosis following surgery and as a therapeutic for victims of heart attack or stoke.


"If developed for humans, the RBC/tPA method could provide an ideal way of delivering clot-busting drugs, with fewer side effects," said Muzykantov. "In theory, patients could donate blood before surgery and receive their own cells bound to tPA following surgery, providing a safer alternative to blood-thinning medication."

Research has shown that preventing thrombosis helps to reduce mortality and morbidity in many diseases. Unfortunately, current clot-busting drugs have the tendency to cause excessive bleeding, either by causing bleeding outside of the blood vessels or by removing pre-existing and, perhaps, beneficial blood clots. According to the Penn researchers, RCB/tPA spares existing blood clots and is too large to cause damage outside of the bloodstream.

To coat red blood cells with tPA, Muzykantov and his colleagues capitalized on the ’stickiness’ of streptavidin-biotin, a protein complex used in laboratories to study molecular interactions. Streptavidin forms an incredibly tight bond to a tiny molecule called biotin, so the researchers ’biotinylated’ tPA and RBCs and used streptavidin to link them together. According to the researchers, the technique may provide a safe way of extending the longevity and safety of drugs within the circulatory system.

"Red blood cells can travel hundreds of kilometers throughout the blood vessels during their 100-or so day life-span. That fact alone makes the idea of RBC-bound therapeutics very interesting," said Muzykantov. "Moreover, red blood cells are relatively large, which makes it very difficult for drugs bound to them to burrow their way out of the bloodstream where they could potentially do damage."

Greg Lester | University of Pennsylvania
Further information:
http://www.uphs.upenn.edu/news/News_Releases/august03/clotbuster.htm

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

Melting solid below the freezing point

23.01.2017 | Materials Sciences

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>