Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Trojan Clot-Buster: Drug-Coated Red Blood Cells Destroy Blood Clots From Within

12.08.2003


Thrombosis - the formation of internal blood clots - is a common cause of complications and even death following surgery. To create a better means of preventing thrombosis, researchers at University of Pennsylvania School of Medicine coated red blood cells (RBCs) with tissue plasminogen activator (tPA), a clot-dissolving drug commonly used as an emergency treatment for stroke. When given alone, tPA has a short life span in circulation and has the potential to cause serious bleeding as it diffuses out of the bloodstream. The RBC/tPA combo, however, lasts ten times longer in the bloodstream than free-floating tPA and decreases the likelihood of excess bleeding, according to a new study.



"The idea of coating red blood cells with tPA was to create a Trojan Horse, a vehicle for sneaking tPA into the bloodstream that could not only add to the drug’s longevity, but would also allow it to be incorporated into a growing blood clot. RBC/tPA can dissolve blood clots from within," said Vladimir R, Muzykantov, MD, PhD, associate professor in Penn’s Department of Pharmacology and author of the study. "Our research shows that the Trojan Horse approach converts tPA into a potent killer of nascent blood clots, one that would pose a much smaller risk of causing internal bleeding."

In the August issue of Nature Biotechnology, Muzykantov and his colleagues demonstrate in animal models how the marriage of red blood cells and tPA has the potential of safely preventing thrombosis following surgery and as a therapeutic for victims of heart attack or stoke.


"If developed for humans, the RBC/tPA method could provide an ideal way of delivering clot-busting drugs, with fewer side effects," said Muzykantov. "In theory, patients could donate blood before surgery and receive their own cells bound to tPA following surgery, providing a safer alternative to blood-thinning medication."

Research has shown that preventing thrombosis helps to reduce mortality and morbidity in many diseases. Unfortunately, current clot-busting drugs have the tendency to cause excessive bleeding, either by causing bleeding outside of the blood vessels or by removing pre-existing and, perhaps, beneficial blood clots. According to the Penn researchers, RCB/tPA spares existing blood clots and is too large to cause damage outside of the bloodstream.

To coat red blood cells with tPA, Muzykantov and his colleagues capitalized on the ’stickiness’ of streptavidin-biotin, a protein complex used in laboratories to study molecular interactions. Streptavidin forms an incredibly tight bond to a tiny molecule called biotin, so the researchers ’biotinylated’ tPA and RBCs and used streptavidin to link them together. According to the researchers, the technique may provide a safe way of extending the longevity and safety of drugs within the circulatory system.

"Red blood cells can travel hundreds of kilometers throughout the blood vessels during their 100-or so day life-span. That fact alone makes the idea of RBC-bound therapeutics very interesting," said Muzykantov. "Moreover, red blood cells are relatively large, which makes it very difficult for drugs bound to them to burrow their way out of the bloodstream where they could potentially do damage."

Greg Lester | University of Pennsylvania
Further information:
http://www.uphs.upenn.edu/news/News_Releases/august03/clotbuster.htm

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>