Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Carnegie Mellon researchers developing new ways to store tissue, organs


Developing more efficient ways of storing tissues and organs

Carnegie Mellon University’s Yoed Rabin and Paul Steif have received $1.3 million over the next four years from the National Institutes of Health to develop more efficient ways of storing transplant tissue and organs in cryogenic temperatures. Mechanical Engineering professors Rabin and Steif are working to improve techniques of cryopreservation, the process of storing biological materials in extremely low temperatures.

"Our long-term goal is to reduce the destructive mechanical stresses induced during the cryopreservation of organs and tissues of a significant size," said Rabin, who specializes in heat transfer in biological systems.

"It is a little bit like watching an ice cube break up in a glass of water and trying to figure out what made the ice fracture and devise ways to prevent it from cracking," Rabin said.

Both Rabin and Steif are charged with developing engineering tools to monitor when these breakups are likely to occur and develop improved methods for storing transplant tissues such as blood vessels and heart valves, and ultimately for life-saving organs like kidneys, lungs or the heart.

The Carnegie Mellon researchers will work with Chicago-based Organ Recovery System, a company specializing in the clinical preservation and storage of tissues.

"We are extremely pleased to be working with Carnegie Mellon and its expert research team," said Mike Taylor, vice president of research and development for Organ Recovery System. Taylor said his company will provide Carnegie Mellon researchers with their proprietary preservation technologies for blood vessel systems to test and study the thermal stresses during cryopreservation.

At present, clinicians are able to store embryos, sperm and stem cells in freezers, but Carnegie Mellon researchers want to develop systems for the safe storage of more complex tissues and organs, which could offer a significant breakthrough in the treatment of diseases and perhaps broaden the cache of transplant organs available to an increasing number of patients. As of August 1, 2003, 82,129 people nationwide were waiting for an organ transplant compared with 53,167 in 1997, according to the Richmond, Va.-based United Network for Organ Sharing. In addition, new preservation technology emerging from this basic research will be important as an enabling technology for the emerging disciplines of tissue engineering and regenerative medicine that seek to replace damaged or diseased tissues with new living material

Chriss Swaney | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>