Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists develop greater accuracy in recording baby’s heart rates in the womb


A team from Imperial College London based at Queen Charlotte’s and Chelsea, Hammersmith and the Royal Brompton Hospitals has worked with equipment developed by scientists at QinetiQ, Europe’s largest science and technology organisation, to study the heart rate of unborn babies in minute detail.

The technique, reported in this months British Journal of Obstetrics and Gynaecology, will allow doctors to monitor the health of babies’ hearts and obtain the full fetal ECG (fECG), particularly during high risk pregnancies, such as where the mother suffers from diabetes or pre-eclampsia or where there is a family history of serious arrhythmia such as Long QT syndrome. These conditions can affect the baby, sometimes resulting in a still birth or sudden death in later life.

Dr Myles J.O. Taylor from Imperial College London and the Hammersmith Hospital comments: “Although it has been possible to record the fECG from the baby in the womb since the 1960’s, the technique has not been totally reliable, as it is difficult to separate the heart rate from background interference. This new technique will allow us to accurately record and analyse the fetal ECG, not just in single pregnancies, but also in multiple pregnancies which we believe is a world first.”

The researchers used electrodes placed on the maternal abdomen to record the data, which are then relayed back to a computer able to process the signals, picking out the baby’s heart signal from background interference, such as from the mother’s heart and external electrical sources.

The equipment uses sophisticated filtering, amplification and signal systems making use of developments in computing and digital signal processing technologies to record this data.

Dr Mark Smith, QinetiQ scientist, who led the team that developed the fECG system, said: “ I am absolutely delighted that the equipment we have developed is getting such excellent results at Queen Charlotte’s.”

The team has studied more than 600 pregnant women so far between fifteen and forty weeks pregnancy including those with twin and triplet pregnancies.

Dr Helena Gardiner, from Imperial College London and the Hammersmith and Royal Brompton Hospitals, adds: “This new technique will be particularly useful in gathering more information about heart function and development in unborn children. Cardiac arrhythmia is believed to be a factor in cot death, and by getting more information on the hearts of unborn babies, it may be possible to detect those at high risk and prevent the devastating effects of some arrhythmias on the fetus and newborn baby.”

Tony Stephenson | alfa

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>