Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein profile predicts prognosis for lung cancer

08.08.2003


In the future, many cancer scientists and physicians believe, a "molecular fingerprint" of an individual´s cancer may be used to diagnose that patient´s disease and tailor therapy.



Researchers at Vanderbilt have moved a step closer to that scenario with the identification of a distinct pattern of expression of 15 proteins in lung cancers that can predict a poor prognosis or a good prognosis. All patients in the poor prognosis group had died one year after diagnosis, while all patients in the good prognosis group were still alive. Median survival, the point at which half the patients were still alive, was six months for the poor prognosis group, compared to 33 months for the good prognosis group. "If this pattern is confirmed in larger studies, its prognostic power exceeds that of virtually any previously published standard molecular marker," the authors write in the August 9 issue of The Lancet.

The scientists also demonstrate that protein profiles obtained from a tiny amount of tumor tissue – only 1 millimeter in diameter and only 1/1000 of a millimeter in thickness - can be used to predict risk that the cancer has spread to nearby lymph nodes.


"Involvement of lymph nodes is one of the most important factors in determining treatment strategies, so the clinical implications of these data could be significant," said Dr. David P. Carbone, Ingram Professor of Cancer Research, professor of Medicine and Cancer Biology. "Being able to use molecular markers to divide patients into high- or low-risk groups would also be very useful in determining treatment strategy."

Such a predictor could help patients and families, with their physicians, decide the most appropriate action, which could range from more aggressive therapy at the outset to avoiding therapies that are more likely to hurt quality of life for the patient than to extend that life.

The research involved investigators from the Vanderbilt-Ingram Cancer Center; Vanderbilt School of Medicine´s departments of Medicine, Preventive Medicine, Molecular Physiology and Biophysics, Cardiac and Thoracic Surgery, and Pathology; and Vanderbilt´s Mass Spectrometry Research Center. The project is part of Vanderbilt´s Specialized Program of Research Excellence (SPORE) in lung cancer, a major initiative funded by the National Cancer Institute.

Now that the human genome has been defined, proteomics – the study of the proteins that carry out the work of the cells at the instruction of the genes – is widely considered the next frontier in biomedical research. Vanderbilt has one of the strongest programs in the world in proteomics research, with the sophisticated equipment, informatics power and statistical expertise required to comprehensively analyze the activity of thousands of proteins at once.

The investigators used mass spectrometry and customized software to analyze samples from 79 lung tumors and 14 normal lung tissue. The investigators were able, based on differences in patterns of protein expression, to distinguish with 100 percent accuracy:

  • Lung tumor from normal lung;

  • Primary non-small cell lung cancer (NSCLC) from normal lung;

  • Primary NSCLC from cancer that had spread to the lungs from other organs; and

  • Adenocarcinomas from squamous cell carcinomas, squamous cell carcinomas from large cell carcinomas.

Predictions based on protein profiles were confirmed by pathological evaluation under a microscope. In one case, a large cell carcinoma may have been misclassified based on protein patterns as an adenocarcinoma, but the investigators report that this tumor may actually be an adenocarcinoma that is too poorly differentiated to identify as such under the microscope.

The investigators note that using protein profiles to make distinctions that are already apparent under the microscope offers little use in clinical care, although the approach is potentially useful in identifying novel therapeutic targets. However, the ability to use protein profiles to predict node involvement or to identify patients as high- or low-risk could have great implications for treatment strategies, Carbone said.

"Because such small tissue samples are needed, it would be of great interest to analyze protein expression patterns of tissue samples from needle aspirations or from different cell subtypes within the lung," Carbone said. "It also would be interesting to look for patterns associated with response to specific therapies, with smoking exposure, or with preneoplasia and the progression to cancer.

"If these data are confirmed using larger numbers of patients, this technology could have significant implications for the clinical management of non-small cell lung cancer."

Contact: Cynthia Floyd Manley, cynthia.manley@vanderbilt.edu

Cynthia Floyd Manley | EurekAlert!
Further information:
http://www.mc.vanderbilt.edu/reporter

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>