Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique lowers CT radiation dose for children

29.07.2003


A new technique allows radiologists to lower the radiation dose that computed tomography (CT) delivers by tailoring the dose based on a child’s size, according to a study appearing in the August issue of the journal Radiology.



"The purpose of our research was to provide the technologists who run CT scanners with a precise recipe for lowering the radiation dose levels for pediatric patients by matching radiation to body size, while still delivering a high-quality CT scan," said the study’s lead author, John M. Boone, Ph.D. "There is a well-established need for this type of formula for dose reduction in pediatric CT," said Dr. Boone, professor of radiology and bioengineering at the University of California Davis in Sacramento.

The researchers studied CT images acquired using simulated pediatric patients of varying sizes to determine the lowest radiation doses achievable without loss of image quality. The resulting technique charts provide guidance for both head and body CT for pediatric patients from infancy to adolescence.


The researchers found that abdominal CT radiation doses can be reduced by 80 percent (from the standard adult level) for children with a five-inch abdominal diameter and by 9 percent for those with a 10-inch abdominal diameter. To measure the patient size, the technologist may either wrap a measuring tape around the body part to be scanned or use software measurement tools available on the CT computer.

Recently, the CT radiation dose delivered to pediatric patients has come under scrutiny, as the increasing number of beneficial medical applications for pediatric CT result in more pediatric exposure to radiation.

While several studies have reported qualitative techniques for estimating what dose reductions could be made while still maintaining good CT image quality, the new study offers a more exacting measure, according to Dr. Boone. "Our research leveraged the physics of CT along with experimental measurements performed on a CT scanner of tissue-like cylinders of different diameters," he said. "Our study therefore relies upon quantitative data for determining dose reduction, which should provide a more objective set of instructions for dose reduction in pediatric CT."

The researchers report that using the dose reduction factors outlined in the study would result in a population dose reduction of 77 percent in an evenly distributed population between 0 and 14 years of age. "If the radiology community used the techniques that are recommended in this article, there would be a substantial reduction in pediatric CT dose nationwide," Dr. Boone said.

Dr. Boone recommended that parents of small children ask the personnel operating the CT scanner if measures are being taken to reduce the radiation dose. If the child is an adolescent or is near the stature of an adult, then little or no dose reduction may be possible.

"There is widespread recognition in the pediatric radiology community of the need to reduce CT dosage for smaller patients. The scanner manufacturers have virtually all responded to this, and the newer scanners being delivered today generally have automatic procedures for reducing dose in smaller patients," he said. "As older CT scanners that do not have automatic dose reduction capabilities are replaced with newer models that do, dose reduction for smaller patients will become normal practice. In the meantime, the technique factors that we reported in our article will be useful towards this goal of lowering radiation dosage," Dr. Boone said.

Maureen Morley | EurekAlert!
Further information:
http://radiology.rsnajnls.org
http://www.rsna.org

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>