Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cedars-Sinai researchers detail events that enable brain tumors to weaken immune system

25.07.2003


In an article appearing in a special issue of the Journal of Neuro-oncology, researchers at Cedars-Sinai Medical Center’s Maxine Dunitz Neurosurgical Institute describe a complex cell-level process that allows malignant brain tumors to protect themselves by damaging the thymus, rapidly degrading the immune system. In a second article, Institute scientists identify a molecular mechanism that causes cell death of cancer-fighting lymphocytes as they infiltrate a brain tumor.



"We are dissecting and better understanding the mechanisms that enable tumors to evade destruction by the immune system. This gives us new tools in our fight against brain cancer, to essentially correct these deficits and further enhance the ability of the immune system, not only to detect but also to destroy brain tumors," said Keith L. Black, M.D., director of the Institute, Cedars-Sinai’s Division of Neurosurgery and the Comprehensive Brain Tumor Program.

In an animal study, researchers found that intracranial gliomas – aggressive brain tumors – damage the thymus, the gland responsible for the development and potency of the immune system’s T cells. As the thymus shrinks and its normal structure becomes distorted, many of the thymocytes – the "immature" cells destined to become functional T cells potentially capable of destroying a variety of antigens – undergo a process that weakens and kills them.


Thymocytes are derived from bone marrow and as they travel through the thymus they go through a natural selection process that removes the weakest and prepares the strongest to become lymphocytes that can later adapt as needed to meet a variety of immune challenges. When an intracranial glioma is present, the researchers found, the number of healthy T cells leaving the thymus is dramatically reduced, preventing a large-scale attack on the tumor.

Changes to the thymus and "recent thymic emigrant" (RTE) T cells are similar to those seen in advanced cases of AIDS, in which HIV causes thymocyte death. In glioma progression, researchers believe glucocorticoids, hormones produced by the adrenal glands, are involved in the loss of thymocytes.

The authors noted that physical stress on the body may play a significant role because it causes the release of glucocorticoids. In rats that had their adrenal glands removed to reduce the production of glucocorticoids, the damaging effects were significantly less pronounced.

This finding may also have implications for the way physicians currently treat swelling of brain tissue in patients who have brain tumors. Synthetic glucocorticoids administered to reduce intracranial pressure are highly effective for this purpose but their impact on the thymus and T cells may be further inhibiting an already embattled immune system.

Although CD8(+) cells are produced elsewhere in the body, those originating in the thymus appear to have special relevance in anti-glioma immunity, according to the study.

"It appears that these recent thymic emigrant T cells preferentially home to gliomas or they have an enhanced anti-tumor activity that allows them to home there preferentially," said Christopher J. Wheeler, Ph.D., research scientist and corresponding author on both papers.

"In a sense, we see two mechanisms working against each other," said Dr. Wheeler, "Recent thymic emigrant T cells are homing to the tumor, but there is a subversion of thymic function by the tumor itself. Therefore, while we have those cells preferentially homing – they’re enriched relative to other cells – we don’t have a lot of those cells to begin with."

According to the second paper, the tumor’s immediate environment also changes in a way that thwarts an effective tumor-infiltrating response.

The population of "types" of T cells found in aggressive, malignant tumors was out of balance compared to the response seen in benign tumors. Benign tumors had a high proportion of CD8(+) T cells compared to CD4(+) T cells, which is an indication of a strong tumor-killing immune response. In contrast, nearly all gliomas exhibited greater proportions of CD4(+) relative to CD8(+) T cells.

This manipulation of tumor-infiltrating lymphocytes does not appear to be controlled by the tumor cells themselves but at least to some extent by properties of surrounding tissue, and the ratio correlated directly with the involvement of specific protein molecules detected in nearby cells.

The suspect proteins, Fas ligand (FasL) and Fas, exist in normal brain and blood vessel lining tissue and play a role in immune system regulation. Based on this study, however, they also are expressed on tumor-associated endothelial cells where they may intercept the cancer-fighting T lymphocytes. Endothelial cells make up the lining of blood vessels.

According to the article, increasing levels of endothelial FasL correlated with decreasing proportions of tumor-infiltrating cytotoxic T lymphocytes – tumor-killing immune cells. This suggests the possibility that Fas ligand contributes to a tumor’s ability to evade the immune system.

Taken together, the studies indicate that malignant brain tumors are protected against immunity because the number of potential T cells is reduced in the thymus, and those that initially survive may later be damaged or destroyed.

Malignant gliomas continue to be considered incurable with a short length of survival, although researchers at the Institute have devised a vaccine strategy that has provided encouraging results in early trials. The treatment, called dendritic cell immunotherapy, assists the immune system in recognizing cancer cells as targets for attack, but it depends on the existence of healthy T cells to launch and sustain the immune response.

"The immune system will try to fight off a malignant brain tumor but because it does not accomplish this very effectively, we’re trying to enhance its ability with our cancer vaccine and other therapies," said Dr. Black, who holds Cedars-Sinai’s Ruth and Lawrence Harvey Chair in Neuroscience.

"We know that the strongest predictor of survival in patients with brain tumors is age. The younger immune system is better able to put up resistance than an older immune system because the thymus naturally becomes weaker and it has fewer precursors of immune cells to recruit in the fight against the tumor. We observe a strong correlation between the survival of a tumor and patient age, which is directly proportional to the number of T cells produced by the thymus."

The current studies provide insights that may lead to methods to prevent loss of T cells, repair those that become damaged, and strengthen and replenish the supply needed to contain and destroy brain tumors.

Sandra Van | EurekAlert!
Further information:
http://www.csmc.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>