Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metal detectors pass safety test on pregnant women

21.07.2003


Hand held metal detectors (HHMDs), such as those used for security checks in airports, do not cause harmful heating or nerve stimulation in pregnant women, according to research published today (22 July 2003) in the Institute of Physics journal Physics in Medicine and Biology. The role of the Center for Devices and Radiological Health (CDRH), Maryland, is to ensure the safety of radiological products, so electromagnetic wave emitting HHMDs were an obvious choice for them to investigate, especially following the heightened security measures of recent years.



Dr Wolfgang Kainz and his colleagues at CDRH tested nine different HHMDs on a model of a pregnant woman to see if they caused nerve stimulation or a temperature rise in the mother or foetus, and found that none of them did. They also compared their measurements against two international safety standards*, neither of which give specific guidelines on safe exposure levels for pregnant women. All the metal detectors operated at well below the recommended levels, but this raises the question of whether there should be separate guidelines for pregnant women. Future research could tackle this possibility, as well as potential long term effects from the HHMDs, which were not explored in this study.

The team used measurements of the surface shape of a woman in her 34th week of pregnancy to create a computer model of a pregnant woman. They approximated the foetus to be spherical, 20cm wide, and positioned one centimetre below the surface of the mother’s skin.


Then, the team measured the magnetic field emitted by each of the nine HHMDs in horizontal planes one, two, five and 11cm away from each detector. With these measurements, they computed the "induced current density" and the "specific absorption rate" (SAR) in the pregnant woman. Induced current density is the amount of electrical current flowing in a unit of area generated by the metal detector, and can cause harmful nerve stimulation if it is too high. The SAR is a measurement of the heat absorbed by the tissue, which tells you if there is a temperature rise in the body as a result of using the HHMD. If a device’s electromagnetic emissions cause a temperature rise of more than one degree Centigrade, it is considered damaging to the body.

Their results were compared to two international standards that set recommended upper limits for the induced current density and the SAR to protect exposed people from immediate effects of radiation. They found that the levels of both quantities were at least three times lower than the limits, and in some instances levels were thousands of times lower. This is due to the variation between the range of metal detectors, and the fact that the standards use different thresholds for safety.

"This study shows that, based on existing exposure standards, these metal detectors do not cause harmful heating or nerve stimulation in pregnant women. We are delighted to publish this good news, as metal detectors are used in our everyday lives for security checks in buildings and airports," said Jane Roscoe, senior publisher for Physics in Medicine and Biology.

Michelle Cain | alfa
Further information:
http://www.iop.org

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>