Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metal detectors pass safety test on pregnant women

21.07.2003


Hand held metal detectors (HHMDs), such as those used for security checks in airports, do not cause harmful heating or nerve stimulation in pregnant women, according to research published today (22 July 2003) in the Institute of Physics journal Physics in Medicine and Biology. The role of the Center for Devices and Radiological Health (CDRH), Maryland, is to ensure the safety of radiological products, so electromagnetic wave emitting HHMDs were an obvious choice for them to investigate, especially following the heightened security measures of recent years.



Dr Wolfgang Kainz and his colleagues at CDRH tested nine different HHMDs on a model of a pregnant woman to see if they caused nerve stimulation or a temperature rise in the mother or foetus, and found that none of them did. They also compared their measurements against two international safety standards*, neither of which give specific guidelines on safe exposure levels for pregnant women. All the metal detectors operated at well below the recommended levels, but this raises the question of whether there should be separate guidelines for pregnant women. Future research could tackle this possibility, as well as potential long term effects from the HHMDs, which were not explored in this study.

The team used measurements of the surface shape of a woman in her 34th week of pregnancy to create a computer model of a pregnant woman. They approximated the foetus to be spherical, 20cm wide, and positioned one centimetre below the surface of the mother’s skin.


Then, the team measured the magnetic field emitted by each of the nine HHMDs in horizontal planes one, two, five and 11cm away from each detector. With these measurements, they computed the "induced current density" and the "specific absorption rate" (SAR) in the pregnant woman. Induced current density is the amount of electrical current flowing in a unit of area generated by the metal detector, and can cause harmful nerve stimulation if it is too high. The SAR is a measurement of the heat absorbed by the tissue, which tells you if there is a temperature rise in the body as a result of using the HHMD. If a device’s electromagnetic emissions cause a temperature rise of more than one degree Centigrade, it is considered damaging to the body.

Their results were compared to two international standards that set recommended upper limits for the induced current density and the SAR to protect exposed people from immediate effects of radiation. They found that the levels of both quantities were at least three times lower than the limits, and in some instances levels were thousands of times lower. This is due to the variation between the range of metal detectors, and the fact that the standards use different thresholds for safety.

"This study shows that, based on existing exposure standards, these metal detectors do not cause harmful heating or nerve stimulation in pregnant women. We are delighted to publish this good news, as metal detectors are used in our everyday lives for security checks in buildings and airports," said Jane Roscoe, senior publisher for Physics in Medicine and Biology.

Michelle Cain | alfa
Further information:
http://www.iop.org

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>