Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metal detectors pass safety test on pregnant women

21.07.2003


Hand held metal detectors (HHMDs), such as those used for security checks in airports, do not cause harmful heating or nerve stimulation in pregnant women, according to research published today (22 July 2003) in the Institute of Physics journal Physics in Medicine and Biology. The role of the Center for Devices and Radiological Health (CDRH), Maryland, is to ensure the safety of radiological products, so electromagnetic wave emitting HHMDs were an obvious choice for them to investigate, especially following the heightened security measures of recent years.



Dr Wolfgang Kainz and his colleagues at CDRH tested nine different HHMDs on a model of a pregnant woman to see if they caused nerve stimulation or a temperature rise in the mother or foetus, and found that none of them did. They also compared their measurements against two international safety standards*, neither of which give specific guidelines on safe exposure levels for pregnant women. All the metal detectors operated at well below the recommended levels, but this raises the question of whether there should be separate guidelines for pregnant women. Future research could tackle this possibility, as well as potential long term effects from the HHMDs, which were not explored in this study.

The team used measurements of the surface shape of a woman in her 34th week of pregnancy to create a computer model of a pregnant woman. They approximated the foetus to be spherical, 20cm wide, and positioned one centimetre below the surface of the mother’s skin.


Then, the team measured the magnetic field emitted by each of the nine HHMDs in horizontal planes one, two, five and 11cm away from each detector. With these measurements, they computed the "induced current density" and the "specific absorption rate" (SAR) in the pregnant woman. Induced current density is the amount of electrical current flowing in a unit of area generated by the metal detector, and can cause harmful nerve stimulation if it is too high. The SAR is a measurement of the heat absorbed by the tissue, which tells you if there is a temperature rise in the body as a result of using the HHMD. If a device’s electromagnetic emissions cause a temperature rise of more than one degree Centigrade, it is considered damaging to the body.

Their results were compared to two international standards that set recommended upper limits for the induced current density and the SAR to protect exposed people from immediate effects of radiation. They found that the levels of both quantities were at least three times lower than the limits, and in some instances levels were thousands of times lower. This is due to the variation between the range of metal detectors, and the fact that the standards use different thresholds for safety.

"This study shows that, based on existing exposure standards, these metal detectors do not cause harmful heating or nerve stimulation in pregnant women. We are delighted to publish this good news, as metal detectors are used in our everyday lives for security checks in buildings and airports," said Jane Roscoe, senior publisher for Physics in Medicine and Biology.

Michelle Cain | alfa
Further information:
http://www.iop.org

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>