Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metal detectors pass safety test on pregnant women

21.07.2003


Hand held metal detectors (HHMDs), such as those used for security checks in airports, do not cause harmful heating or nerve stimulation in pregnant women, according to research published today (22 July 2003) in the Institute of Physics journal Physics in Medicine and Biology. The role of the Center for Devices and Radiological Health (CDRH), Maryland, is to ensure the safety of radiological products, so electromagnetic wave emitting HHMDs were an obvious choice for them to investigate, especially following the heightened security measures of recent years.



Dr Wolfgang Kainz and his colleagues at CDRH tested nine different HHMDs on a model of a pregnant woman to see if they caused nerve stimulation or a temperature rise in the mother or foetus, and found that none of them did. They also compared their measurements against two international safety standards*, neither of which give specific guidelines on safe exposure levels for pregnant women. All the metal detectors operated at well below the recommended levels, but this raises the question of whether there should be separate guidelines for pregnant women. Future research could tackle this possibility, as well as potential long term effects from the HHMDs, which were not explored in this study.

The team used measurements of the surface shape of a woman in her 34th week of pregnancy to create a computer model of a pregnant woman. They approximated the foetus to be spherical, 20cm wide, and positioned one centimetre below the surface of the mother’s skin.


Then, the team measured the magnetic field emitted by each of the nine HHMDs in horizontal planes one, two, five and 11cm away from each detector. With these measurements, they computed the "induced current density" and the "specific absorption rate" (SAR) in the pregnant woman. Induced current density is the amount of electrical current flowing in a unit of area generated by the metal detector, and can cause harmful nerve stimulation if it is too high. The SAR is a measurement of the heat absorbed by the tissue, which tells you if there is a temperature rise in the body as a result of using the HHMD. If a device’s electromagnetic emissions cause a temperature rise of more than one degree Centigrade, it is considered damaging to the body.

Their results were compared to two international standards that set recommended upper limits for the induced current density and the SAR to protect exposed people from immediate effects of radiation. They found that the levels of both quantities were at least three times lower than the limits, and in some instances levels were thousands of times lower. This is due to the variation between the range of metal detectors, and the fact that the standards use different thresholds for safety.

"This study shows that, based on existing exposure standards, these metal detectors do not cause harmful heating or nerve stimulation in pregnant women. We are delighted to publish this good news, as metal detectors are used in our everyday lives for security checks in buildings and airports," said Jane Roscoe, senior publisher for Physics in Medicine and Biology.

Michelle Cain | alfa
Further information:
http://www.iop.org

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>