Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single protein is key in response to bacterial, viral infections

21.07.2003


A single protein acts as a key switch point in frontline immune system reactions to both bacterial and viral infections, according to a report published online today in the journal Nature. In determining how this protein functions, a team of scientists supported by the National Institute of Allergy and Infectious Diseases (NIAID) can now explain why certain symptoms, such as fever, occur regardless of the cause of infection.



Bruce Beutler, M.D., of The Scripps Research Institute in La Jolla, CA, who led the team, says, "This protein, Trif, stands at a crossroads in the mouse innate immune system and, by inference, we believe in the human immune system as well." A clear understanding of Trif’s role in sparking inflammation gives scientists an obvious target for drugs designed to combat the runaway inflammation characteristic of many infectious and immune-mediated diseases.

Mammals, including humans, employ a family of proteins (called toll-like receptors, or TLRs) in first-line defense against bacteria and viruses. One protein, TLR-3, is activated by viruses, while another, TLR-4, responds to molecules frequently contained in bacterial cell walls. The TLRs are an important part of the innate immune system, the all-purpose "first-responder" arm of the immune system. Once activated by invading pathogens, TLRs relay the alarm to other actors in the immune system. In short order, the innate immune system responds with a surge of chemicals that together cause inflammation, fever and other responses to infection or injury.


Defining the intervening steps in the signaling pathway from TLR activation to inflammatory response is an important objective of Dr. Beutler’s research. Previously, scientists had discovered a "transducer" protein responsible for passing on the news of a bacterial attack. Mice lacking this protein could still fight bacterial infection, although not very well. There had to be at least one more transducer protein.

Dr. Beutler’s team found this mystery protein through a technique called forward genetics. Genetic mutations are randomly introduced into strains of mice. A sensitive screening mechanism allows the researchers to pick out any mice that, by chance, show interesting characteristics, such as weakened responses to infection. In the latest research, Dr. Beutler and his colleagues identified a mouse whose immune system did not react to a substance called endotoxin, a component of bacterial cell walls. Subsequently, the team determined the consequence of the genetic error in these mice -- they cannot produce working Trif protein.

Lack of Trif explained why the mutant mice could not respond adequately to endotoxin (which mimics bacterial infection). However, Dr. Beutler notes, the team also made the surprising observation that mice missing Trif are also unable to respond to the double-stranded RNA produced by most viruses and thus could not fight off viral infections.

The scientists inferred that both the bacteria-sensing TLR-4 pathway and the virus-sensing TLR-3 pathway are blocked when Trif is defective. This is the first innate immune system transducer protein discovered that mediates signals generated by both bacterial and viral infection.

"Scientists have been searching for the endotoxin signaling molecules of the innate immune system for more than four decades," says Daniel Rotrosen, M.D., director of NIAID’s Division of Allergy, Immunology and Transplantation. "We’ve witnessed an explosion of information on innate immunity in the past five years, catalyzed by the discovery of the TLR family of signaling molecules," he adds. "NIAID’s grant to Scripps enables scientists from diverse disciplines spanning biology and informatics to tackle a wide variety of problems in innate immunity. This finding is the first of what we anticipate will be many discoveries made possible by forward genetics and other cutting-edge technologies supported through this grant."

Anne A. Oplinger | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>