Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aspirin could reduce the risk of deadly infections

18.07.2003


Adding to the long list of the benefits of aspirin, researchers have found that it is responsible for reducing toxic bacteria associated with serious infections. A study led by Dartmouth Medical School describes how salicylic acid-produced when the body breaks down aspirin-disrupts the bacteria´s ability to adhere to host tissue, reducing the threat of deadly infections.



The investigation, which appears in the July 15 issue of the Journal of Clinical Investigation, focused on the bacterium Staphylococcus aureus, and its role in infections in animal tissue. S. aureus is a leading cause of serious systemic (often referred to as staph) infections and abscesses.

"Our research shows that salicylic acid, a byproduct of aspirin, impacted the stress system of the bacteria and reduced its ability to cause infection," said lead author Dr. Ambrose Cheung, a professor of microbiology and immunology at Dartmouth Medical School.


By disrupting this stress system, aspirin reduced the bacteria´s capacity to adhere to host tissue. In addition, the salicylic acid disrupted the ability of S. aureus to produce toxins, which the bacteria require to propagate and spread to other tissue. As a result, the animals treated with aspirin have smaller abscesses and they have fewer number of bacteria in the infection. Aspirin did not cure it, notes Cheung, but it reduced the ability of the bacteria to cause infection.

The S. aureus bacteria are also responsible for sepsis, a blood poisoning disease that strikes 750,000 people in the US annually and is the leading cause of death in America´s non-coronary intensive care units. Cases of sepsis are growing in number each year and are becoming increasingly resistant to antibiotics, making aspirin a possibly invaluable option for treatment.

"The fact that aspirin has been used for pain treatment, to reduce mortality due to heart attacks, and can possibly reduce the risks of infection is incredible," said Cheung. "We look forward to conducting future tests with aspirin in conjunction with antibiotic therapy."

Andy Nordhoff | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>