Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insight into the way pain is regulated in the brain could lead to new target for therapy

17.07.2003


A UCSF-led team has demonstrated that the cerebral cortex, the site of higher cognitive functions, not only perceives pain, but plays a role in regulating pain, and that it does so in part through the inhibitory neurotransmitter GABA, suggesting a possible target for therapy.



The finding, published in the July 17 issue of Nature, provides some of the first neuroanatomical evidence that the cerebral cortex not only receives pain signals from nerve cells in lower regions of the brain, but modulates pain signals.

"Our finding suggests that the cerebral cortex is not just the end-point of pain processing. The activity of the cortex can change the set-point of the pain threshold in a top-down manner, completely modifying the experience of pain," says lead author Luc Jasmin, MD, PhD, FRCS, UCSF assistant professor of neurological surgery.


Traditionally, pain researchers have focused their research on the lower portion of the nervous system, as pain signals originate in the periphery – i.e., in the skin and other organs – and are transmitted into the spinal cord before being relayed to the brain. Intercepting pain signals at this early stage theoretically should prove effective in treating pain conditions.

However, the causes of many forms of chronic pain have proven elusive and the pain difficult to treat. In recent years, scientists have found that stimulating the cerebral cortex diminishes pain in patients with some forms of chronic pain, such as post-stroke pain syndromes, but they have not known how the relief occurs.

In the current study, conducted in normal rats, the scientists sought insight into this phenomenon by focusing on a small region of the cerebral cortex known as the rostral agranular insular cortex (RAIC), one of the few cortical areas consistently activated by painful stimuli. As GABA (gamma-aminobutyric acid), the major inhibitory neurotransmitter, or neurochemical messenger, of the brain, is prolific in the RAIC, the scientists reasoned that manipulating levels of the neurotransmitter could shed light on the way in which the RAIC might modulate pain.

The results were dramatic. When the scientists increased levels of GABA throughout the RAIC -- either by slowing the neurochemical’s normal metabolism until it accumulated over hours or by expressing a gene (GAD 67) that encodes an enzyme that synthesizes GABA -- the animals displayed a clear and consistent analgesia (insensitivity to pain), as seen in the fact that they did not withdraw their paws from a hot surface. When the increase in GABA was sustained by injecting the GAD 67 gene in neuronal and glial cells (i.e., gene therapy), the animals showed analgesia up to 10 days, suggesting that GABA works through neural mechanisms that do not down-regulate over time.

Moreover, when the scientists blocked transmission of signals through the descending pain inhibitory system, which extends from the RAIC to the spinal cord, the analgesic effect was reversed, indicating that GABA worked at least in part through this system to enhance the inhibition of the neurons that incited pain.

The investigators subsequently determined that when GABA acted through the descending pain inhibitory system it worked through neurons that have GABA-A receptors and that project to a region of the brain stem known as the locus coeruleus.

But they also determined that a large number of RAIC neurons expressing GABA-B receptors project to a brain region known as the amygdala, a site involved in pain, fear and attention processes, and this led them to explore the role that GABA might have in this pathway. The results were notable. After increasing GABA in the RAIC, the scientists selectively disinhibited GABA-B bearing RAIC neurons that projected to the amygdala. As a result, the animals experienced pain. When the activation was reversed, the pain was abolished, indicating that the neural projections from the RAIC to the amygdala play a key role in initiating pain.

"This finding demonstrates that the change in pain level works through two separate systems, with opposite effects. If the activity of the locus coeruleus is increased, analgesia occurs. If the activity of the amygdala is increased, pain occurs," says senior author Peter O’Hara, PhD, UCSF associate professor of anatomy. "This dual effect is probably a defining feature of pain modulation, and we speculate that an imbalance in the cortical output is likely to underlay some chronic pain states."

In chronic pain patients, the pathway from the RAIC to the amygdala is more likely to be the one disregulated, says Jasmin, because the one from the RAIC to the locus coeruleus appears to be involved only in the response to an acute stimulus delivered over the course of a few minutes.

The rats in the study showed less pain when GABA was increased due to their decreased perception of the stimulus and their diminished fear of it.

But Jasmin says that it is also possible that the animals were simply paying less attention to the painful stimuli, a phenomenon that has been reported in humans. One study he cites demonstrated that Israeli children who were receiving dialysis for their diabetes reported less discomfort when they were watching TV.

"We know that pain perception can be altered by mood, attention and cognition, but we know little of the neural mechanisms underlying cortical modulation of pain," says Jasmin.

In upcoming work, Jasmin and O’Hara will examine the impact of GABA delivery to the RAIC on the pain threshold of rats with chronic pain conditions such as chronic inflammation, as occurs in rheumatoid arthritis, and chronic nerve injury, as occurs from diabetes and shingles. The team will examine whether sustained expression of the GAD gene in the RAIC will produce prolonged analgesia. They also will look specifically at the impact of GABA on the amygdala, and whether it changes the animals’ alertness to sensory stimuli, i.e., a hot surface.

In the future, predicts Jasmin, gene therapy to increase levels of GABA in various areas of the brain will be used to treat pain, Parkinson’s disease and epileptic seizures.

Jennifer O’Brien | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>