Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers identify secondary pathway for survival of cancer cells

17.07.2003


Discovery may lead to targeted therapies to interrupt cancer development


Principal investigator Craig Thompson, MD (right), shows immunologist Casey Fox, PhD, images of gel results (dark bands) of surviving cancer cells when enzyme Pim-2 is present. Their latest research into the origins of cancer is published in the August 1 edition of Genes & Development. Abramson Family Cancer Research Institute, University of Pennsylvania (2003)



(Philadelphia, PA) – Researchers at the Abramson Family Cancer Research Institute at the University of Pennsylvania have determined that a key enzyme, Pim-2, is responsible for the survival of cancer cells. The finding – which will appear in the August 1 edition of the journal Genes & Development – represents an important advance in understanding why cancer cells survive in the body (working against the body’s natural immune system), before growing into tumors. It also answers a 20-year-old question as to the purpose of Pim-2, an enzyme present in high concentrations in many tumors, but left unstudied to this time; and it equates Pim-2 with another, more commonly studied survival pathway, the Akt-enzyme pathway.

"This finding is important because it shows, for the first time, how Pim-2 works and its key role in cancer cell survival," said Craig Thompson, MD, Principal Investigator of the study and Scientific Director of the Abramson Family Cancer Research Institute (AFCRI). "Up until now, predominant thinking has looked to the Akt pathway as the primary pathway for cancer cells. Now we know that Pim-2 plays an equally important role – and it is as much of a cancer-promoting gene, or oncogene, as Akt.


"Our next step is to try and manipulate the action of Pim-2, so that we can interfere with the survival of cancer cells," said Thompson. "Ultimately, the hope is that this could lead to new, targeted therapies for killing cancer cells before they turn into deadly tumors that can spread elsewhere in the body."

Pim-2 was originally identified, in 1984, as a serine/threonine kinase, one of several hundred principal oncogenes under investigation for their role in cancer cell survival and growth. Its mutated form has been observed in high quantities in cases of prostate cancer, leukemia and multiple myeloma. Close to 50 kinases are thought to play a key role in cancer progression. Through a process of elimination, scientists test each oncogene for its role or function in cancer progression, manipulating each gene, to see which changes, called mutations, allow the cell to live, and which ones let the cell die.

In the presence of Pim-2, sixty per cent of cancer cells survived attempts to starve or kill the cell. Cancer cells survived for the maximum duration in the study – up to three weeks – with Pim-2 present, regardless of whether or not growth factor (food for the cell) was present. Only when both the Akt pathway and Pim-2 pathway were dysregulated (no longer functioning inside the cell), were cancerous cells unable to survive and died. The Akt pathway is well studied because it plays many roles in cancer progression, including a key role in cancer cell survival.

Both Pim-2 and Akt survival pathways were found to operate independently; Pim-2 was not activated by any of the Akt pathway regulating enzymes – PI3K, HSP-90 and TOR. While Akt interacts with other enzymes to promote cell survival, the function of Pim-2 is independent, with no other enzymes required. The pathways were shown to be distinct by their response to the antibiotic rapamycin: Akt is sensitive to rapamycin and Pim-2 is not. Rapamycin is a commonly used drug for treatment of transplant patients, it restrains the body’s immune response from rejecting foreign growths, such as a new organ. Pim-2 overcomes this potent inhibitor of cell survival.

While these pathways appeared distinct, they are not completely different and both have some common actions. One factor shared by both pathways is a phosphorylated "off signal" suppressor protein called 4E-BP1. Suppressor genes prevent the cancer cell from growing, so when turned "off", the cell can grow.

Exposing the role of Pim-2 was accomplished through the latest technology for cancer research, a micro-array analysis of RNA in the immune systems of mice.

Penn scientists focused their research on the question of why cancer cells survive – and not simply removed from the body by the immune system. For tumor cells to grow, they must have the ability to ignore "death signals" that would cause them to die, and not promote cancer. Pim-2 had been shown as an important gene in causing tumors in mouse experiments, and was also present in large amounts in tumors. Over-production of Pim-2 allows the cells to ignore or become insensitive to boosters of the immune system, such as the antibiotic rapamycin.

The study took two years to complete (mid-2000 to mid-2002). Funding was provided through grants from the National Cancer Institute and the AFCRI.

David March | EurekAlert!
Further information:
http://www.uphs.upenn.edu/news

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>