Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers identify secondary pathway for survival of cancer cells

17.07.2003


Discovery may lead to targeted therapies to interrupt cancer development


Principal investigator Craig Thompson, MD (right), shows immunologist Casey Fox, PhD, images of gel results (dark bands) of surviving cancer cells when enzyme Pim-2 is present. Their latest research into the origins of cancer is published in the August 1 edition of Genes & Development. Abramson Family Cancer Research Institute, University of Pennsylvania (2003)



(Philadelphia, PA) – Researchers at the Abramson Family Cancer Research Institute at the University of Pennsylvania have determined that a key enzyme, Pim-2, is responsible for the survival of cancer cells. The finding – which will appear in the August 1 edition of the journal Genes & Development – represents an important advance in understanding why cancer cells survive in the body (working against the body’s natural immune system), before growing into tumors. It also answers a 20-year-old question as to the purpose of Pim-2, an enzyme present in high concentrations in many tumors, but left unstudied to this time; and it equates Pim-2 with another, more commonly studied survival pathway, the Akt-enzyme pathway.

"This finding is important because it shows, for the first time, how Pim-2 works and its key role in cancer cell survival," said Craig Thompson, MD, Principal Investigator of the study and Scientific Director of the Abramson Family Cancer Research Institute (AFCRI). "Up until now, predominant thinking has looked to the Akt pathway as the primary pathway for cancer cells. Now we know that Pim-2 plays an equally important role – and it is as much of a cancer-promoting gene, or oncogene, as Akt.


"Our next step is to try and manipulate the action of Pim-2, so that we can interfere with the survival of cancer cells," said Thompson. "Ultimately, the hope is that this could lead to new, targeted therapies for killing cancer cells before they turn into deadly tumors that can spread elsewhere in the body."

Pim-2 was originally identified, in 1984, as a serine/threonine kinase, one of several hundred principal oncogenes under investigation for their role in cancer cell survival and growth. Its mutated form has been observed in high quantities in cases of prostate cancer, leukemia and multiple myeloma. Close to 50 kinases are thought to play a key role in cancer progression. Through a process of elimination, scientists test each oncogene for its role or function in cancer progression, manipulating each gene, to see which changes, called mutations, allow the cell to live, and which ones let the cell die.

In the presence of Pim-2, sixty per cent of cancer cells survived attempts to starve or kill the cell. Cancer cells survived for the maximum duration in the study – up to three weeks – with Pim-2 present, regardless of whether or not growth factor (food for the cell) was present. Only when both the Akt pathway and Pim-2 pathway were dysregulated (no longer functioning inside the cell), were cancerous cells unable to survive and died. The Akt pathway is well studied because it plays many roles in cancer progression, including a key role in cancer cell survival.

Both Pim-2 and Akt survival pathways were found to operate independently; Pim-2 was not activated by any of the Akt pathway regulating enzymes – PI3K, HSP-90 and TOR. While Akt interacts with other enzymes to promote cell survival, the function of Pim-2 is independent, with no other enzymes required. The pathways were shown to be distinct by their response to the antibiotic rapamycin: Akt is sensitive to rapamycin and Pim-2 is not. Rapamycin is a commonly used drug for treatment of transplant patients, it restrains the body’s immune response from rejecting foreign growths, such as a new organ. Pim-2 overcomes this potent inhibitor of cell survival.

While these pathways appeared distinct, they are not completely different and both have some common actions. One factor shared by both pathways is a phosphorylated "off signal" suppressor protein called 4E-BP1. Suppressor genes prevent the cancer cell from growing, so when turned "off", the cell can grow.

Exposing the role of Pim-2 was accomplished through the latest technology for cancer research, a micro-array analysis of RNA in the immune systems of mice.

Penn scientists focused their research on the question of why cancer cells survive – and not simply removed from the body by the immune system. For tumor cells to grow, they must have the ability to ignore "death signals" that would cause them to die, and not promote cancer. Pim-2 had been shown as an important gene in causing tumors in mouse experiments, and was also present in large amounts in tumors. Over-production of Pim-2 allows the cells to ignore or become insensitive to boosters of the immune system, such as the antibiotic rapamycin.

The study took two years to complete (mid-2000 to mid-2002). Funding was provided through grants from the National Cancer Institute and the AFCRI.

David March | EurekAlert!
Further information:
http://www.uphs.upenn.edu/news

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>