Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cardiologists advance search for routine vaccine to prevent heart attacks and strokes

17.07.2003


In their quest for a vaccine that may one day routinely protect against heart attacks and strokes, cardiologists at Cedars-Sinai Medical Center and their colleagues in Sweden have isolated a key step in the mechanism that leads to vascular plaque buildup and blood clot formation.



In mice genetically predisposed to quickly develop atherosclerosis, the researchers were able to trigger a protective immune response, significantly increasing the level of immunoglobulin gamma G (IgG), an antibody known to be important in protection against atherosclerosis. Immunization resulted in reduction of atherosclerosis by about 60 percent, compared with controls.

Heart disease is well established as the nation’s leading cause of death, and atherosclerosis is one of the major risk factors. Over the past several years, evidence has mounted that infection and inflammation contribute to this process. Researchers hope, therefore, that by attacking the first link in a complex chain of events, they can shut down a deadly process before it begins.


"Inflammation and infection have been implicated in plaque buildup and blood clot formation, processes that trigger most heart attacks and strokes. It has been observed that influenza may increase the risk of heart attacks and death, especially in the elderly," said Prediman K. Shah, M.D., director of the Division of Cardiology and the Atherosclerosis Research Center at Cedars-Sinai.

Dr. Shah said previous experiments have shown that the influenza virus can accelerate plaque formation and arterial inflammation in mice that are genetically susceptible to high cholesterol and plaque buildup. The virus also may neutralize the protective effects of HDL, the good cholesterol.

"Recent observational studies have provided strong evidence that the flu vaccine can reduce heart attacks, stroke and death by a significant degree, and this is now being evaluated in a randomized trial. Similarly in mice, pneumococcal vaccine has been shown to reduce plaque buildup by a mechanism that does not involve pneumococcal infection," added Dr. Shah, who holds the Shapell and Webb Family Endowed Chair in Cardiology at Cedars-Sinai.

"Our goal is to develop a vaccine that will one day be administered in childhood to interrupt the inflammatory process and save lives from heart attacks and strokes," Dr. Shah said.

A "proof of concept" study, reported in the May issue of the journal Arteriosclerosis, Thrombosis, and Vascular Biology, was conducted by researchers at the Atherosclerosis Research Center at Cedars-Sinai and their colleagues at Malmö University in Sweden. It is one in a series of investigations seeking to discover the processes that contribute to the development of atherosclerosis and to engage the immune system in interrupting them.

The therapy centers on a recently discovered immune response that occurs within oxygen-damaged particles of low-density lipoproteins (LDL), the "bad" cholesterol that is associated with a high risk of developing arterial plaque build-up. Specific protein components of LDL were injected to trigger an immune response. These constituents, called apoB-100 peptide sequences, can be reproduced for the possible development of a vaccine.

Lipoproteins, such as LDL, are substances in the blood consisting of proteins combined with fats. Apoliproteins, such as apolipoprotein B (apoB), are the building blocks of lipoproteins that determine their characteristics, providing structure, receptor sites for interaction with other molecules, and chemicals needed for enzyme production.

When LDL remains in the bloodstream or trapped in arterial structures for an extended length of time, oxidation causes the release of a variety of chemicals. These chemicals damage and inflame the vessel, and as the body tries to repair the injury, plaque builds up on the artery wall.

Mice in the study had a genetic predisposition to quickly develop atherosclerosis. At the age of 10 weeks, a high-fat diet was introduced, leading to extremely high cholesterol levels and even more aggressive atherosclerotic disease. Ten mice were injected at six weeks and again at nine weeks with selected apoB peptides that are known to elicit a potent immune response. Ten other mice did not receive the peptides. At 25 weeks, blood and tissue from the mice were analyzed.

Although the exact mechanisms by which immune responses reduce atherosclerosis are not yet clear, the early results of this therapeutic approach appear promising for the development of a protective vaccine.

In a separate but related article in the same issue of Arteriosclerosis, Thrombosis, and Vascular Biology, the researchers from the centers in Sweden and at Cedars-Sinai reported identifying a large number of "epitopes" within the apoB-100 component of oxidized LDL that provoke an immune response in humans. Epitopes are the specific sites on molecules to which antigens bind. These findings will be instrumental in ongoing studies of the role of immune responses in reducing risk of cardiac problems.



The studies were supported by grants from the Swedish Medical Research Council, the Swedish Heart-Lung Foundation, the King Gustaf V 8th Birthday Foundation, the Bergqvist Foundation, the Tore Nilsson Foundation, the Crafoord Foundation, the Swedish Society of Medicine, the Royal Physiographic Society, the Malmö University Hospital Foundation, the Lundström Foundation, and a grant from the Eisner Foundation to P.K. Shah, M.D., director of Cardiology at Cedars-Sinai Medical Center.

Cedars-Sinai Medical Center is one of the largest nonprofit academic medical centers in the Western United States. For the fifth straight two-year period, it has been named Southern California’s gold standard in health care in an independent survey. Cedars-Sinai is internationally renowned for its diagnostic and treatment capabilities and its broad spectrum of programs and services, as well as breakthrough in biomedical research and superlative medical education. Named one of the 100 "Most Wired" hospitals in health care, the Medical Center ranks among the top 10 non-university hospitals in the nation for its research activities.

Citation:

"Inhibition of Atherosclerosis in ApoE-Null Mice by Immunization With ApoB-100 Peptide Sequences" and "Identification of Immune Responses Against Aldehyde-Modified Peptide Sequences in ApoB Associated With Cardiovascular Disease." Arteriosclerosis, Thrombosis, and Vascular Biology, May 2003.

Sandra Van | Van Communications
Further information:
http://www.csmc.edu/

More articles from Health and Medicine:

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>