Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Microbubbles can image blood vessel growth in tumors


Imagine being able to quickly detect and diagnose blood vessel growth in cancerous tumors, and even predict how fast the tumors might metastasize or spread. Researchers at the University of Virginia Health System are doing just that in animal models using millions of tiny microbubbles injected into the bloodstream, coupled with contrast-enhanced ultrasound, an inexpensive and widely-used technique using sound waves to "see" inside the body.

Their findings are published in the July 22 edition of the journal Circulation.

"For the first time, this research shows that scientists can detect cancer using ultrasound contrast agents targeted to abnormal blood vessels that reside within tumors," said Dr. Jonathan Lindner, a U.Va. cardiologist and primary author of the study. "By assessing how much new blood vessel growth there is, we can detect tumors and metastatic spread at a very early stage."

Lindner said the one of the first signs of tumor and metastasis is a remodeling of surrounding blood vessels in the normal tissue near a tumor. The tumor activates the process of growth of new blood vessels called angiogenesis, supplying nutrients and oxygen to the tumor and keeping it alive.

To detect angiogenesis in and around a tumor, Dr. Lindner’s research group developed microbubbles targeted to the endothelial (inner) lining of new blood vessels. Microbubbles are normally about half the size of a red blood cell and are composed of a gas surrounded by a shell. They are currently being used worldwide to image blood flow and heart function in patients.

In their experiments, Lindner’s team at U.Va. attached molecules of echistatin, derived from viper venom, to the surface of each microbubble and injected the bubbles intravenously into mice with brain tumors. The echistatin molecule caused the bubbles to bind to a molecular component (an integrin) called alpha-v beta-3, which is expressed in the lining, or endothelium, of new blood vessels. After just ten minutes, the targeted microbubbles, and new blood vessels, appeared in bright colors on an ultrasound image.

"We may soon be able to assess cancer prognosis on patients using a technique like this. The more angiogenesis, the more aggressive a tumor is likely to be," Lindner said. "This microbubble technique may be able to tell people and their physicians exactly what’s likely to happen with a tumor in the future. If we know it has a certain amount of angiogenesis, then we know a tumor might be susceptible to treatment with new anti-tumor or anti-neoplastic agents developed to shrink tumors."

The U.Va. researchers were also able to use microbubbles to image capillary blood flow in tumors. They found that blood flow has a high velocity on the periphery of the tumors, but a much slower velocity inside a tumor. Blood flow velocity is a potentially important marker for tumor detection, Lindner said.

Linder and his U.Va. team first used microbubbles to detect angiogenesis in animal models, but not tumors. Their earlier findings were published in the January 28, 2003 edition of Circulation.

Bob Beard | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>