Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An aspirin a day keeps Staphylococcus aureus away

16.07.2003


In the July 15 issue of The Journal of Clinical Investigation, Ambrose Cheung and colleagues at Dartmouth School of Medicine in New Hampshire, USA, report that salicylic acid (SAL), the major metabolite of aspirin, downregulates two Staphylococcus aureus genes key to this organism’s pathogenesis.



Over 100 years have passed since S. aureus was first described as the organism responsible for causing sepsis and abscesses. Today it remains a leading cause of serious infections such as endocarditis, pneumonia, and septicemia and requires intensive antibiotic therapy, which is often unsuccessful due to the rise of antibiotic resistant strains.

Aspirin has previously been shown to reduce the virulence of S. aureus in models of endocarditis. In an earlier study, this same group found that while administration of aspirin or its metabolite, SAL, was capable of reducing the ability of S. aureus to attach to host cells, the effect was significantly enhanced following SAL administration.


In this issue of the JCI, Cheung and colleagues extend these earlier findings and report that treatment with SAL induced activation of the S. aureus stress response gene sigB, resulting in downregulation of regulons sarA and agr, which control the expression of the genes encoding a-hemolysin and fibronectin. This downregulation resulted in decreased ability of the bacteria to adhere to host cells, and reduced S. aureus toxin-mediated hemolysis and thrombolysis of host cells.

"The establishing of a straightforward, unequivocal strategy to downregulate staphylococcal virulence using a cheap, simple, relatively non-toxic, resorbable compound such as SAL may be seen as major progress in the development of intervening strategies in addition to antimicrobial drugs" stated Professor Mathias Herrmann, Director of the Department of Bacteriology and Hygiene at the University of Saarland, Germany in his accompanying commentary. The report is the first description of aspirin-mediated genetic effects against S. aureus and represents an exciting new prospect for this widely used and established drug.

Contact:

Ambrose L. Cheung
Dartmouth Medical School, Hanover, New Hampshire, USA.
Phone: 603-650-1310
Fax: 603-650-1362
Email: ambrose.cheung@dartmouth.edu


Mathias Herrmann
University of Saarland Hospital, Homburg/Saar, Germany.
Phone: 49-6841-162-3900
Fax: 49-6841-162-3985
Email: mathias.herrmann@uniklinik-saarland.de

Brooke Grindlinger | EurekAlert!
Further information:
http://www.jci.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>