Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD Researchers Find Brain Overgrowth During First Year of Life in Autism

16.07.2003


Small head circumference at birth, followed by a sudden and excessive increase in head circumference during the first year of life, has been linked to development of autism by researchers at the University of California, San Diego (UCSD) School of Medicine and Children’s Hospital and Health Center, San Diego. Autism spectrum disorder occurs in one out of every 160 children and is among the more common and serious of neurological disorders of early childhood.


Researchers found rapid, excessive brain growth in infants later identified with autism spectrum disorder.


Courchesne discusses the JAMA study with co-authors Ruth Carper, Ph.D., left, and Natacha Akshoomoff, Ph.D., standing



Published in the July 16, 2003 issue of the Journal of the American Medical Association (JAMA), the study identifies the first neurobiological, early-warning signs of autism during a child’s first year of life, and offers the potential for earlier diagnosis, intervention and improved clinical outcomes for autistic children. In addition, this dramatic brain overgrowth is expected to become a major focus of future autism genetics research.

The early-warning sign – abnormally accelerated rate of head, and therefore brain, growth – occurs well before the first clinical signs of autism. It also appears to predict the severity of clinical outcome as well as the degree of brain abnormality at a later age. Currently, the disorder is not typically detected until ages two to four, when a child develops behavioral signs and symptoms, such as delayed speech, unusual social and emotional reactions, and poor attention to and exploration of the environment.


The investigators noted that this rapid, excessive brain growth in infants with autism does not allow enough time for accumulation of experiences and emotions that guide and shape normal behavior.

"During this period of important learning and plasticity, when the brain is experiencing the world and deciding how to construct itself, it’s growing too fast in the infant with autism," said the study’s senior author Eric Courchesne, Ph.D., UCSD professor of neurosciences and director of the Center for Autism Research at Children’s. "Without the guidance of experience and learning, the brain may be creating abnormal connections that make it very hard for autistic children to make sense of the world they live in."

The research team also found that the rate of excessive brain growth predicted the severity of autism. Children later diagnosed with a more severe form demonstrated a faster, and greater rate of brain overgrowth during their first year of life, compared to that of children with a milder form of the disorder.

Noting that the new findings offer strategies for earlier diagnosis and treatment, study co-author Natacha Akshoomoff, Ph.D., said "previous studies have shown that early therapeutic services result in a better outcome for the child. These usually include speech and occupational therapy, plus communication and social skill building. However, currently there are no biological or medical interventions for children identified with autism."

Akshoomoff is a UCSD assistant professor of psychiatry, and assistant research scientist at Children’s.

In studying the medical records of 48 two- to five-year olds who have been diagnosed with autism spectrum disorders, the research team recruited volunteers from community advertisements and referrals. Each of the children in the study had been a participant in previous MRI studies reporting age-related changes in the brain in autism. The children’s head circumference measurements at birth and during various points in their first year of life were compared to the Centers for Disease Control and Prevention growth charts for normal children and to the Fels Longitudinal Study of head circumference in 51 infants born between 1980 and 2001.

It was found that the head size of the autistic children at birth was, on average, in the 25th percentile, meaning that the circumference measurement for these children was smaller than 75 percent of other newborns. During the first year of life, however, these same children experienced sudden, rapid and excessive brain growth, that put them in the 85th percentile at about 12- to 14-months of age. From then on, the brain growth slowed.

"This burst of overgrowth takes place in a brief period of time, between about two months and six to 14 months of age," Courchesne said. "So, we know it cannot be caused by events that occur later, such as vaccinations for mumps, measles and rubella or exposure to toxins during childhood."

Although no one has yet determined the biological cause of autism, the new findings "give us information about the timing of abnormal brain development," said study co-author Ruth Carper, Ph.D., a post-doctoral researcher in the UCSD Department of Neurosciences and a research associate at Children’s. "This provides a timeframe for further research, to determine the exact brain abnormalities and the biological mechanisms which produce them."

"This dramatic brain growth in early life is the first active neuro-developmental process to be discovered in infants with autism," Courchesne added. "It provides, for the first time, a developmental process to target for animal model studies of the disorder. Animal models that accurately mimic these abnormal growth events will be necessary in order to discover causes and biological treatments for autism. Once we know what causes this specific growth defect, it may be possible to use biological treatments to successfully intervene before the overgrowth begins, thereby allowing the brain and behavior to develop down more normal paths."

Although some conditions, such as hydrocephalus or certain types of metabolic disorders, cause a large head circumference in the first year of life, these clinical conditions are much less common than autism spectrum disorders, which occur in as many as one out of every 160 children. According to the Autism Society of America, more than a million Americans (including adults) suffer from an autistic disorder.

The correlation between rapid brain growth and the behavioral manifestations seen in autistic children was also discussed in the JAMA paper. The three authors noted that "this early, yet transient, period of brain overgrowth must be an important factor in causing the emergence of autistic behavior because it occurs at the beginning of an important period of developmental neuroplasticity and learning."

Research has shown that the developing human brain is designed to benefit from an extended period of experience-guided growth. In the study, the researchers noted that sensations, emotions, thoughts and actions direct the brain’s axonal and dendritic growth, creating, reinforcing or eliminating brain synapses as needed. Eventually, these experiences lead to the emergence of refined higher order neurobehavioral functions, such as cognitive, emotional, linguistic and motor skills.

"Using our findings as an early indicator of autism, intervention might begin two or three years earlier when the brain might be at a more malleable stage and so, might result in a better outcome for the child," Courchesne said.

And, all it takes is a simple, low-tech tape measure. Unfortunately, not all infants get their head circumference measured on a regular basis, Akshoomoff noted.

"Although nearly all hospitals measure a newborn’s head circumference, this measurement is sometimes not included in each well-baby visit," she said. "If pediatricians include head circumference measurements routinely throughout the first year of life, and use up-to-date head circumference norms, they might notice a rapid growth, and could then refer the child for thorough diagnostic testing and possible early intervention services."

The research team, directed by Courchesne, plans to expand this study to a larger group of children, to better determine the timing of brain mal-development. This will include sophisticated MRI studies that follow children under age three for several years.

The JAMA study was supported by a grant from the National Institute of Neurological Disorders and Stroke of the National Institutes of Health.

UCSD and Children’s Hospital have an affiliated children’s health program that includes pediatric patient care, research, education and community service programs

Sue Pondrom | UCSD
Further information:
http://health.ucsd.edu/news
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>