Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A sex-specific gene for depression

15.07.2003


Depression is the second-leading cause of disability worldwide, affecting nearly 10% of the population. According to George S. Zubenko, M.D., Ph.D., professor of psychiatry at the University of Pittsburgh School of Medicine and adjunct professor of biology at Carnegie Mellon University, women are twice as likely as men to develop depression, and genetic differences appear to account for some of that disparity.



These latest results build on research published by Dr. Zubenko and his team in October of 2002 that identified a small region of chromosome 2 – equal to 0.01 percent of the human genome – as the potential hiding place for a susceptibility gene for depression in women. "These findings confirm our earlier research suggesting the existence of susceptibility genes that have sex-limited effects on the vulnerability of women to developing severe depression," said Dr. Zubenko. "Over 80% of women in our study who inherited a particular variant of CREB1 developed depressive disorders, while a second version of this gene appeared to have protective effects."

CREB1 is a gene that encodes a regulatory protein called CREB that orchestrates the expression of large numbers of other genes that play important roles in the brain and the rest of the body as well. The widespread importance of CREB as a genetic regulator throughout the body suggests that the newly identified CREB1 variants may influence the development of additional psychiatric disorders related to depression, such as alcohol and other substance use disorders, as well as medical conditions that are associated with depression.


The identification of CREB1 leads Dr. Zubenko’s team to believe that genes for other components of cell signaling pathways that operate through CREB may be involved in mood disorders. Further study along those lines could lead to the identification of additional susceptibility genes for mood disorders and shed light on important differences in the pathophysiology of mood disorders in men and women.

Alterations in CREB1 expression have been reported in the brains of patients who died with major depression, those of animal models of major depression and related disorders, and in the brains of animals treated with antidepressant drugs. CREB also has been implicated in neuronal plasticity, cognition and long-term memory, abnormalities of which commonly occur in patients with major depression, may predispose patients to the onset or recurrence of major depression, and may be related to the eventual development of irreversible dementias like Alzheimer’s disease in some patients. Interactions of CREB with estrogen receptors might explain how inherited variants of CREB1 could affect the susceptibility of major depression only in women.

"The identification and characterization of susceptibility genes and their products will provide new opportunities for drug development and disease prevention, new information about the biology of mood and its regulation," said Dr. Zubenko. "Genotyping markers in chromosomal regions that harbor susceptibility genes may provide more immediate advances in the treatment of major depression. For example, individuals with particular genetic markers in these regions may respond better to particular current treatments than others. This strategy may enable clinicians to use genetic markers to better match individual patients to treatments to which they will optimally respond, while minimizing side effects."

Aimee Midei | EurekAlert!
Further information:
http://www.naturesj.com/mp/

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>