Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cyclacel’s biomarker technology shows that CYC202 induces cancer cells to commit suicide

15.07.2003


Over half of solid tumour patients analysed tested positive for cancer cell death

Cyclacel Limited, the UK-based biopharmaceutical company, reported today that it demonstrated through state-of-the-art biomarker technology that CYC202 (R-roscovitine), its lead CDK inhibitor drug candidate, appears to induce cancer cell suicide or apoptosis in patients receiving the drug. Details of the biomarker data obtained with CYC202 were reported today at an oral presentation at the American Association for Cancer Research (AACR) annual meeting taking place here.

Biomarker technology is used to understand the molecular mechanism of action of novel drugs in humans, provide insights into their pharmacological properties, measure their biological effect (e.g. induce cancer cells to commit suicide) and determine susceptibility or resistance to the treatment. In the long-term biomarker analysis of tumour blood and tissues may allow selective treatment with CYC202 of those patients identified as likely to benefit from the drug based on the specific genetic profile of their tumour.



Biomarker analysis of blood samples from patients with cancer treated with CYC202 demonstrated that 54% (14 of 26 analysed) tested positive for cancer cell death or apoptosis following single agent treatment with the drug. In addition, seven CYC202 Phase I patients with various tumours, including pancreas and lung cancer, experienced long lasting tumour stabilisation. These patients received CYC202 capsules taken by mouth after exhausting other treatment options. CYC202 is presently being tested in two international, multicentre Phase IIa clinical trials for the treatment of breast and lung cancer in combination with standard chemotherapy.

Cyclacel’s Biomarker Team used a novel assay technique to calculate the extent by which cancer cells are committing suicide (or apoptotic index) in different patients on the drug. An advantage of this test is that it measures cellular material released into the circulation by dying or dead cancer cells as a result of apoptosis. In this manner small blood samples can be readily obtained from patients with solid tumours rather than tissue pathology samples obtained through biopsies. Another approach taken by Cyclacel’s Biomarker Team is the study of plasma proteomic profiles allowing the precise comparison of the proteins present in a patient’s plasma before and after treatment with CYC202. Using this approach markers were detected that are only present in plasma following CYC202 treatment.

Phase I trials are not designed to detect efficacy of experimental drugs. Patients enrolled in Phase I studies suffer from many different types of cancer, have typically exhausted other therapeutic alternatives and usually experience low survival. In order to assess their prognosis it is necessary to wait for approximately six months post treatment to determine whether their cancer has continued to grow. The seven patients in the CYC202 Phase I study reported with stable disease included patients with adenocarcinoma, adrenal, lung, ovarian, pancreatic, parotid gland and thymus cancers. All seven showed long Times-To-Progression (“TTP”) of their cancer, ranging between 7 and more than 11 months, and have been on drug for several months, ranging between 6 and more than 15 cycles each involving 3 weeks of treatment.

Dr Athos Gianella-Borradori, Cyclacel’s Medical Director commented, “It is encouraging to see validation of the presumed mechanism by which CYC202 is causing the death of cancer cells through biomarker technology. It is also encouraging to see Phase I patients with poor prognosis experience long periods of stable disease after single therapy with CYC202. One should nevertheless be cautious about not over interpreting early indications of effectiveness from unscheduled efficacy assessments. Now that we have established a baseline for quantifying apoptosis in patients undergoing CYC202 monotherapy, we can use such biomarker techniques to assess the effects of the drug on patients receiving CYC202 in combination with chemotherapy.”

“The results presented at AACR confirm Cyclacel’s technological leadership in the emerging field of biomarkers,” said Spiro Rombotis, CEO. “This is a strategic technology facilitating more efficient investments in drug development programmes. Biomarkers help determine clinical go/no go decisions very early in clinical development and are also proving invaluable in demonstrating early proof of concept in humans. We believe that biomarkers will be a source of competitive advantage in pivotal trials and market positioning by helping identify responder patients based on their genetic profile. We are excited about the work of our talented Biomarker Team and our goal of converting our understanding of biological pathways into patient treatment guidelines. We expect to use our Biomarker technology in additional drug programmes as they progress into clinical trials.”

About Cyclacel

Cyclacel is a biopharmaceutical company that designs and develops small molecule drugs that act on key cell cycle regulators to stop uncontrolled cell division in cancer and other diseases involving abnormal cell proliferation. The Company’s discovery engines integrate cell cycle biology expertise with a large library of gene-based targets, state-of-the-art RNAi functional genomics, chemogenomics and clinical biomarker technologies to rapidly deliver new drugs. Cyclacel has six research and development programs underway. Most advanced is CYC202, a Cyclin Dependent Kinase (CDK) inhibitor, in Phase II trials for breast and lung cancer. CYC202 has also completed a Phase I trial in healthy volunteers and is being explored for use in glomerulonephritis, a disease of renal cell proliferation. Cyclacel has entered into corporate alliances with AstraZeneca, CV Therapeutics and a top 5 pharmaceutical major all in the oncology field.


Robert Gottlieb | Feinstein Kean Healthcare
Further information:
http://www.cyclacel.com/company_profile/press2003/2003_7_14.htm
http://www.fkhealth.com/

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>