Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How To Eliminate Nitrogen Narcosis Effects

14.07.2003


We do not feel the nitrogen of air, and scientists do not believe that under normal pressure nitrogen can affect human organisms. However, being under water or in the altitude chamber nitrogen produces a different effect. Once the pressure is increased about four times, simulating the pressure which exists at the 30- meter depth, the first signs of intoxication usually show up. They are the same that accompany alcoholic intoxication: unreasonable gaiety, talkativeness, depressed attention, impaired self-control. When the diver descends even deeper, he can easily overlook a danger and experiences difficulty in controlling his movements. Being intoxicated the diver may forget where he is and what he is doing, and may even endanger his life. It has been recognized for almost 70 years that it is nitrogen that causes this effect, and the phenomenon itself has been called nitrogen narcosis. In order to avoid nitrogen effect, physiologists have developed mixtures for breathing at sea depths. In these mixtures relatively inexpensive nitrogen have been replaced by very expensive helium.



Nevertheless, that did not solve all the problems. Nitrogen narcosis effects may even occur with regular dives at depths of 30-40 meters, where helium is not used in the majority of cases. Therefore, it was required to develop a method which would increase the level if resistance to nitrogen narcosis effects. Such method is under way in the Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, under the guidance of Alexander Vjotosh. The researchers exposed laboratory rats to higher temperatures or kept them in the air with insufficient oxygen content, and the rats became more resistant to the nitrogen narcosis effects – they managed to pass appropriate tests with better results. After a special training course the resistance increased about one and a half times. If divers were to take this training course, they would be exposed to a lesser risk working underwater. The rats’ resistance to nitrogen narcosis was also one and a half times raised due to quercetin action in cases when they had been injected the substance eight hours before the diving.

The researchers from St. Petersburg have come forward with a new hypothesis explaining the nitrogen action under pressure. The generally adopted point of view is that nitrogen dissolves in cells’ membranes, causing the change of their characteristics, thus violating nerve impulses formation or conduct. The physiologists from the Sechenov Institute have assumed that under the nitrogen increased pressure in the organisms there are formed additional portions of the active compound, which damages cell proteins.

Sergey Komarov | Informnauka
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>