Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How To Eliminate Nitrogen Narcosis Effects

14.07.2003


We do not feel the nitrogen of air, and scientists do not believe that under normal pressure nitrogen can affect human organisms. However, being under water or in the altitude chamber nitrogen produces a different effect. Once the pressure is increased about four times, simulating the pressure which exists at the 30- meter depth, the first signs of intoxication usually show up. They are the same that accompany alcoholic intoxication: unreasonable gaiety, talkativeness, depressed attention, impaired self-control. When the diver descends even deeper, he can easily overlook a danger and experiences difficulty in controlling his movements. Being intoxicated the diver may forget where he is and what he is doing, and may even endanger his life. It has been recognized for almost 70 years that it is nitrogen that causes this effect, and the phenomenon itself has been called nitrogen narcosis. In order to avoid nitrogen effect, physiologists have developed mixtures for breathing at sea depths. In these mixtures relatively inexpensive nitrogen have been replaced by very expensive helium.



Nevertheless, that did not solve all the problems. Nitrogen narcosis effects may even occur with regular dives at depths of 30-40 meters, where helium is not used in the majority of cases. Therefore, it was required to develop a method which would increase the level if resistance to nitrogen narcosis effects. Such method is under way in the Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, under the guidance of Alexander Vjotosh. The researchers exposed laboratory rats to higher temperatures or kept them in the air with insufficient oxygen content, and the rats became more resistant to the nitrogen narcosis effects – they managed to pass appropriate tests with better results. After a special training course the resistance increased about one and a half times. If divers were to take this training course, they would be exposed to a lesser risk working underwater. The rats’ resistance to nitrogen narcosis was also one and a half times raised due to quercetin action in cases when they had been injected the substance eight hours before the diving.

The researchers from St. Petersburg have come forward with a new hypothesis explaining the nitrogen action under pressure. The generally adopted point of view is that nitrogen dissolves in cells’ membranes, causing the change of their characteristics, thus violating nerve impulses formation or conduct. The physiologists from the Sechenov Institute have assumed that under the nitrogen increased pressure in the organisms there are formed additional portions of the active compound, which damages cell proteins.

Sergey Komarov | Informnauka
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>