Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How To Eliminate Nitrogen Narcosis Effects

14.07.2003


We do not feel the nitrogen of air, and scientists do not believe that under normal pressure nitrogen can affect human organisms. However, being under water or in the altitude chamber nitrogen produces a different effect. Once the pressure is increased about four times, simulating the pressure which exists at the 30- meter depth, the first signs of intoxication usually show up. They are the same that accompany alcoholic intoxication: unreasonable gaiety, talkativeness, depressed attention, impaired self-control. When the diver descends even deeper, he can easily overlook a danger and experiences difficulty in controlling his movements. Being intoxicated the diver may forget where he is and what he is doing, and may even endanger his life. It has been recognized for almost 70 years that it is nitrogen that causes this effect, and the phenomenon itself has been called nitrogen narcosis. In order to avoid nitrogen effect, physiologists have developed mixtures for breathing at sea depths. In these mixtures relatively inexpensive nitrogen have been replaced by very expensive helium.



Nevertheless, that did not solve all the problems. Nitrogen narcosis effects may even occur with regular dives at depths of 30-40 meters, where helium is not used in the majority of cases. Therefore, it was required to develop a method which would increase the level if resistance to nitrogen narcosis effects. Such method is under way in the Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, under the guidance of Alexander Vjotosh. The researchers exposed laboratory rats to higher temperatures or kept them in the air with insufficient oxygen content, and the rats became more resistant to the nitrogen narcosis effects – they managed to pass appropriate tests with better results. After a special training course the resistance increased about one and a half times. If divers were to take this training course, they would be exposed to a lesser risk working underwater. The rats’ resistance to nitrogen narcosis was also one and a half times raised due to quercetin action in cases when they had been injected the substance eight hours before the diving.

The researchers from St. Petersburg have come forward with a new hypothesis explaining the nitrogen action under pressure. The generally adopted point of view is that nitrogen dissolves in cells’ membranes, causing the change of their characteristics, thus violating nerve impulses formation or conduct. The physiologists from the Sechenov Institute have assumed that under the nitrogen increased pressure in the organisms there are formed additional portions of the active compound, which damages cell proteins.

Sergey Komarov | Informnauka
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>