Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New target for skin cancer confirmed

14.07.2003


A University of Minnesota study has confirmed the pivotal role of an enzyme known as JNK2 in the development of nonmelanoma skin cancers. The findings suggest that JNK2 should be evaluated as a target for the prevention and treatment of such cancers. Lead author Zigang Dong, director of the university’s Hormel Institute in Austin, Minn., will present the work at 8:30 a.m. Sunday, July 13, at the American Association for Cancer Research meeting in the Washington Convention Center, 801 Mount Vernon Place NW, Washington, D.C.

Ultraviolet rays from the sun are the major culprit in skin cancer, which accounts for more than half the cancers in the United States. The process of cancer development involves a chain of interactions among biochemicals in the skin, and biochemicals that play key roles in carcinogenesis make potential therapeutic targets. Many human cancers show elevated activity in some form of JNK enzyme, and the enzyme is also activated by sunlight, Dong said.

"Even if one goes into the sun for a few minutes, the activity of JNK in the epidermis rises," said Dong. "If you go out for a few minutes, JNK activity doesn’t stay elevated. But it looks as though if a person gets too much sun exposure, JNK activity becomes permanently elevated and cancers develop. This study indicates that some form of JNK activity is a key step in the process by which nonmelanoma cancers grow."



Working with mice, Dong and his colleagues focused on two enzymes known to be activated by factors that cause cells to divide and that have been considered important in skin cells’ response to UV light. Of the two enzymes, called JNK1 and JNK2, only the latter turned out to play an important role in the development of tumors.

The researchers used two lines of mice that had been rendered enzyme-deficient by inactivation of the gene for either JNK1 or JNK2 in fertilized mouse eggs. When the mice were two months old, the scientists applied a chemical carcinogen to the skin of their backs, followed by five-times-a-week exposure to UVB light, the ultraviolet light that causes skin cancer. At 31 weeks of age, a much smaller percentage of JNK2-deficient mice had tumors (18 percent), compared to control mice (48 percent) or JNK1-lacking mice (50 percent). At 40 weeks of age, the percentage of tumor-bearing JNK2-deficient mice had almost doubled, to 35 percent, while the percentage rose more slowly in control mice (to 56 percent) and JNK1-deficient mice (to 73 percent).

The data suggest that when JNK2 is lacking, skin cells are inhibited, or at least delayed, in their response to UVB light.

"Knocking out the JNK2 enzyme could simply delay the response to ultraviolet light, but if so, it would be significant," Dong said. "If we age enough, every one of us will get cancer. But if we can delay the process, that’s good progress."

The researchers also studied the biochemistry of skin and embryonic cells from the mice. They found that UVB light and a chemical known to promote tumor formation induced biochemical activity associated with cell division and tumor growth in control mice and JNK1-deficient mice, but not in JNK2-deficient mice.


The work was supported by the National Institutes of Health.


Contacts:

Zigang Dong, Hormel Institute director, (507) 437-9600

Deane Morrison, University News Service, (612) 624-2346

Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>