Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New target for skin cancer confirmed

14.07.2003


A University of Minnesota study has confirmed the pivotal role of an enzyme known as JNK2 in the development of nonmelanoma skin cancers. The findings suggest that JNK2 should be evaluated as a target for the prevention and treatment of such cancers. Lead author Zigang Dong, director of the university’s Hormel Institute in Austin, Minn., will present the work at 8:30 a.m. Sunday, July 13, at the American Association for Cancer Research meeting in the Washington Convention Center, 801 Mount Vernon Place NW, Washington, D.C.

Ultraviolet rays from the sun are the major culprit in skin cancer, which accounts for more than half the cancers in the United States. The process of cancer development involves a chain of interactions among biochemicals in the skin, and biochemicals that play key roles in carcinogenesis make potential therapeutic targets. Many human cancers show elevated activity in some form of JNK enzyme, and the enzyme is also activated by sunlight, Dong said.

"Even if one goes into the sun for a few minutes, the activity of JNK in the epidermis rises," said Dong. "If you go out for a few minutes, JNK activity doesn’t stay elevated. But it looks as though if a person gets too much sun exposure, JNK activity becomes permanently elevated and cancers develop. This study indicates that some form of JNK activity is a key step in the process by which nonmelanoma cancers grow."



Working with mice, Dong and his colleagues focused on two enzymes known to be activated by factors that cause cells to divide and that have been considered important in skin cells’ response to UV light. Of the two enzymes, called JNK1 and JNK2, only the latter turned out to play an important role in the development of tumors.

The researchers used two lines of mice that had been rendered enzyme-deficient by inactivation of the gene for either JNK1 or JNK2 in fertilized mouse eggs. When the mice were two months old, the scientists applied a chemical carcinogen to the skin of their backs, followed by five-times-a-week exposure to UVB light, the ultraviolet light that causes skin cancer. At 31 weeks of age, a much smaller percentage of JNK2-deficient mice had tumors (18 percent), compared to control mice (48 percent) or JNK1-lacking mice (50 percent). At 40 weeks of age, the percentage of tumor-bearing JNK2-deficient mice had almost doubled, to 35 percent, while the percentage rose more slowly in control mice (to 56 percent) and JNK1-deficient mice (to 73 percent).

The data suggest that when JNK2 is lacking, skin cells are inhibited, or at least delayed, in their response to UVB light.

"Knocking out the JNK2 enzyme could simply delay the response to ultraviolet light, but if so, it would be significant," Dong said. "If we age enough, every one of us will get cancer. But if we can delay the process, that’s good progress."

The researchers also studied the biochemistry of skin and embryonic cells from the mice. They found that UVB light and a chemical known to promote tumor formation induced biochemical activity associated with cell division and tumor growth in control mice and JNK1-deficient mice, but not in JNK2-deficient mice.


The work was supported by the National Institutes of Health.


Contacts:

Zigang Dong, Hormel Institute director, (507) 437-9600

Deane Morrison, University News Service, (612) 624-2346

Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>