Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studies demonstrate differing response from left and right colon tumors

14.07.2003


Significant genetic differences exist between tumors of the right and left side of the colon, according to data presented today at the 94th Annual Meeting of the American Association for Cancer Research (AACR), and these distinctions should be considered for future research and treatment.



"With emerging treatments directed toward specific molecular targets, there should be special emphasis on such an important differentiation," said Sanne Olesen, M.Sc. of biology, Aarhus University Hospital, Denmark, and lead investigator of the study conducted by scientists from Denmark and Finland. "Hopefully with this new understanding of the differences that exist in the colon, we can more efficiently treat cancer patients."

In the study, approximately 6,800 known genes were monitored for activity. Twenty single samples of normal colonic mucosa were compared to 25 single cancerous samples from both the left and right sides of the colon. Findings were validated by semi-quantitative, RealTime-PCR and immunohistochemistry, or observations of clinical reactions to the immune system.


Scientists found 58 genes that were dissimilar between the normal samples and the left-sided tumor samples, and 118 genes between the normal samples and the right-sided tumor samples. An additional 44 unique genes were found between the right- and left-sided tumor samples. Furthermore, scientists identified 30 genes which showed parallel expression in both sides, and therefore may be regarded as general tumor markers.

"This discovery may explain why some colorectal patients have responded to treatment while others did not," said Dr. Torben Orntoft, a professor at Aarhus University. "With new targeted therapies in development, our patients have a better chance of survival."

Colon cancer is one of the most common cancers found in men and women today. The American Cancer Society estimates that in 2003 there will be about 105,500 new cases of colon cancer in the United States, causing over 57,000 deaths


Founded in 1907, the American Association for Cancer Research (AACR) is a professional society of more than 20,000 laboratory and clinical scientists engaged in cancer research in the United States and more than 60 other countries. AACR’s mission is to accelerate the prevention and cure of cancer through research, education, communication and advocacy. Its principal activities include the publication of five major peer-reviewed scientific journals (Cancer Research; Clinical Cancer Research; Molecular Cancer Therapeutics; Molecular Cancer Research; and Cancer Epidemiology, Biomarkers & Prevention). AACR’s annual meeting attracts more than 12,000 participants who share new and significant discoveries in the cancer field, and the AACR’s specialty meetings throughout the year focus on all the important areas of basic, translational and clinical cancer research.


Contact: Warren Froelich/AACR
froelich@aacr.org
215/440-9300


Aimee Frank/Spectrum Science
amf@spectrumscience.com
202/955-6222

In Washington, DC: (7/11-7/14)
Washington Convention Center
202/249-4060

Warren Froelich | EurekAlert!

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>