Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sequence of human chromosome 7 is fine-tuned and finished

10.07.2003


Researchers at Washington University School of Medicine in St. Louis, in collaboration with investigators at five other centers, have finished sequencing human chromosome 7. The findings are published in the July 10 issue of the journal Nature.



Chromosome 7 is the largest human chromosome to be sequenced so far. The analysis revealed that the chromosome has about 1,150 genes and 940 so-called pseudogenes, stretches of DNA that closely resemble genes but contain some genetic change that prevents them from functioning like a gene. The biological significance of pseudogenes is unknown.

"This work completes another volume in the genome encyclopedia at a high standard of quality and a high degree of continuity," says principal investigator Richard K. Wilson, Ph.D., director of Washington University’s Genome Sequencing Center and professor of genetics and of molecular microbiology. "The sequence for chromosome 7 will be very useful for follow-up studies that have a medical application."


The work may benefit research in cystic fibrosis, deafness, B-cell lymphoma and other cancers, genes for which are found on chromosome 7. Also found there is the gene for P-glycoprotein, a protein that enables cancer cells to resist anticancer drugs. Other important genes found on chromosome 7 include those that help control cell division and cell death, genes for taste and smell receptors and those involved in immune responses.

Chromosome 7 also has a relatively centrally located centromere, a small region found on all chromosomes that is important during cell division. Centromeres on other chromosomes sequenced so far are located near the tip of the chromosome, like a knob. The centromere on chromosome 7 divides the chromosome into a short arm and a long arm, both of which carry many genes. Sequencing proceeded from each end toward the centromere.

The centromere itself contains many short repetitive DNA sequences and few, if any, genes.

"We got in close to the centromere and characterized those repeat sequences for the first time," Wilson says.

The most challenging region of the chromosome to sequence was that containing genes for Williams-Beuren syndrome (WBS), a rare genetic disorder characterized by mild mental retardation, unusual facial appearance and a narrowing of the aorta, the major artery leaving the heart. The WBS region was difficult to decipher because it contains large segments DNA with many duplicated genes, and the number of duplicated genes differs among individuals. Children with WBS are missing long stretches of these duplicated genes.

"It seems that multiple copies of these genes are necessary for normal development, and if any are lost, developmental abnormalities occur," Wilson says. "People who study this disease may find the chromosome 7 sequence data very helpful."

Next, Wilson and his colleagues will resequence certain genes on chromosome 7 from people with acute leukemia to better understand the genetic changes that give rise to the malignancy.


Hillier LW, Fulton RS, Fulton LA. et al. The DNA sequence of human chromosome 7. Nature, July 10, 2003.

Darrell E. Ward | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>