Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test opens prenatal genetic diagnosis to all

09.07.2003


A non-invasive test which allows faster, cheaper, and less risky prenatal genetic screening was announced by Australian researchers at the International Genetics Congress in Melbourne today.

The new test can also be performed much earlier in pregnancy, say its developers Dr Ian Findlay and Mr Darryl Irwin of the Australian Genome Research Facility in Brisbane. It should open the opportunity of prenatal genetic testing to a wider group of women. “This test will focus conventional prenatal testing much more effectively,” said Dr Findlay.

The new test is based around PAP smears of the type normally taken for cancer screening. Cells from the foetus are isolated, genetically identified, and screened for a wide range of abnormalities such as Down syndrome and cystic fibrosis.



Current prenatal tests, such as amniocentesis and chorionic villus sampling, involve putting a needle into the womb to obtain fluid. This carries with it about a one per cent chance of miscarriage. The risk of miscarriage and the high cost of testing mean that these invasive techniques are offered only to mothers over 35 or those at high risk. And only one in 20 indicate an affected pregnancy.

Because only older women are tested, about 80% of Down syndrome pregnancies in younger mothers in Australia are currently not identified. The new prenatal test can safely be offered to all pregnant women. It also ensures that invasive tests, with the associated miscarriage risk, are only performed when necessary for confirmation.

A further advantage of the new test is that it can be easily performed by general practitioners. The samples can then be sent to laboratories through the post for analysis, allowing greater access to prenatal testing in rural Australia and worldwide.

The study which led to the new test, undertaken in Brisbane hospitals, collected PAP samples from 600 women who were between 5 and 35 weeks pregnant. The research team now hopes to perform testing much earlier in pregnancy, giving couples more time to make informed choices. Current amniocentesis testing is performed between 16 and 20 weeks of pregnancy with results taking 2 to 3 weeks. The researchers hope this new PAP technique can be performed as early as 5 weeks with results being available the same day. The new test is also likely to be less costly than conventional techniques which should increase the accessibility of prenatal testing for all.

“For the first time prenatal testing can be offered to all women,” Mr Irwin said. He is currently completing his PhD at the University of Queensland with Dr Findlay.

While foetal cells have been identified in the cervix for many years, this is the first time they have been efficiently isolated from PAP smears. These cells are then DNA fingerprinted using PCR techniques to confirm their foetal origin unequivocably. Genetic diagnosis can be undertaken in the same test. PCR and SNP techniques which can identify tiny changes in the genetic code allow a much wider range of tests to be performed than conventional prenatal techniques. Clinical trials are progressing and it is hoped that this test will be available within 2 or 3 years.


For further information, contact Mr Darryl Irwin on 0412 779 528 or Dr Ian Findlay on 0402 979 983

Niall Byrne | Internat. Congress of Genetics
Further information:
http://www.geneticsmedia.org/Pap_smears.htm

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>