Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New test opens prenatal genetic diagnosis to all

09.07.2003


A non-invasive test which allows faster, cheaper, and less risky prenatal genetic screening was announced by Australian researchers at the International Genetics Congress in Melbourne today.

The new test can also be performed much earlier in pregnancy, say its developers Dr Ian Findlay and Mr Darryl Irwin of the Australian Genome Research Facility in Brisbane. It should open the opportunity of prenatal genetic testing to a wider group of women. “This test will focus conventional prenatal testing much more effectively,” said Dr Findlay.

The new test is based around PAP smears of the type normally taken for cancer screening. Cells from the foetus are isolated, genetically identified, and screened for a wide range of abnormalities such as Down syndrome and cystic fibrosis.



Current prenatal tests, such as amniocentesis and chorionic villus sampling, involve putting a needle into the womb to obtain fluid. This carries with it about a one per cent chance of miscarriage. The risk of miscarriage and the high cost of testing mean that these invasive techniques are offered only to mothers over 35 or those at high risk. And only one in 20 indicate an affected pregnancy.

Because only older women are tested, about 80% of Down syndrome pregnancies in younger mothers in Australia are currently not identified. The new prenatal test can safely be offered to all pregnant women. It also ensures that invasive tests, with the associated miscarriage risk, are only performed when necessary for confirmation.

A further advantage of the new test is that it can be easily performed by general practitioners. The samples can then be sent to laboratories through the post for analysis, allowing greater access to prenatal testing in rural Australia and worldwide.

The study which led to the new test, undertaken in Brisbane hospitals, collected PAP samples from 600 women who were between 5 and 35 weeks pregnant. The research team now hopes to perform testing much earlier in pregnancy, giving couples more time to make informed choices. Current amniocentesis testing is performed between 16 and 20 weeks of pregnancy with results taking 2 to 3 weeks. The researchers hope this new PAP technique can be performed as early as 5 weeks with results being available the same day. The new test is also likely to be less costly than conventional techniques which should increase the accessibility of prenatal testing for all.

“For the first time prenatal testing can be offered to all women,” Mr Irwin said. He is currently completing his PhD at the University of Queensland with Dr Findlay.

While foetal cells have been identified in the cervix for many years, this is the first time they have been efficiently isolated from PAP smears. These cells are then DNA fingerprinted using PCR techniques to confirm their foetal origin unequivocably. Genetic diagnosis can be undertaken in the same test. PCR and SNP techniques which can identify tiny changes in the genetic code allow a much wider range of tests to be performed than conventional prenatal techniques. Clinical trials are progressing and it is hoped that this test will be available within 2 or 3 years.


For further information, contact Mr Darryl Irwin on 0412 779 528 or Dr Ian Findlay on 0402 979 983

Niall Byrne | Internat. Congress of Genetics
Further information:
http://www.geneticsmedia.org/Pap_smears.htm

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>