Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV eludes body’s smart bomb

08.07.2003


HIV inactivates the body’s cellular smart bomb



HIV eludes one of the body’s key smart bomb defenses against infection, and this finding may lay the groundwork for new drugs to treat AIDS, according to a new Salk Institute study.

Nathaniel Landau, a Salk Institute associate professor, and his team have pinpointed how the body battles HIV, a tremendously complex and relentless virus. Their findings appear in the online issue of Cell and will be published in the July 11 print issue.


"What we have uncovered is a war that is being fought on the molecular level between viruses and cells. The war has been going on for millions of years, but we didn’t know about it until now," said Landau.

"We have been focusing on an antiviral system that we never knew about-a single protein called APOBEC3G. APOBEC3G would be a powerful inhibitor of viruses such as HIV, except for one problem: the virus has outsmarted it. During the evolutionary war between the virus and the host, the virus developed an effective counter-measure."

That counter-measure is a gene in HIV called virion infectivity factor (Vif). In an HIV-infected cell, according to Landau, Vif molecules are produced and then attach to the APOBEC3G protein molecules. Once attached, Vif prevents APOBEC3G from getting into the new viruses, and these viruses go on to replicate and spread throughout the body.

Having identified the interaction between Vif and APOBEC3G, Landau and his team then focused on a fundamental question: would it be possible to beat the virus at its own game?

"We found that mice also have the antiviral protein," said Landau. "But interestingly, HIV can’t recognize the mouse protein. As a result, mouse APOBEC3G is a powerful blocker of HIV replication. The mouse APOBEC3G protein goes into HIV and Vif can’t kick it out."

The mouse APOBEC3G functions like a smart bomb with a time-delayed fuse. When the virus is produced in an infected cell, APOBEC3G molecules get into the virus. At first, the protein does nothing; however, when the virus infects a new cell, APOBEC3G is activated. As HIV begins to copy its genes into DNA, APOBEC3G attacks the virus, creating massive mutations. APOBEC3G attacks the cytosines in the virus DNA, removing an essential chemical group to make them into uracil. The viral DNA is so badly mutated that the viral genes can’t function.

"Drug companies may be able to use this information to design a novel type of drug to treat HIV infection. They could develop drugs that attach to APOBEC3G, physically blocking Vif from attaching. If Vif can’t bind to APOBEC3G, the process of HIV replication could be halted," said Landau.

The lead author of the paper was Roberto Mariani, a staff scientist at the Salk Institute. Co-authors of the paper include Darlene Chen, Bärbel Schröfelbauer, Francisco Navarro, Renate König, Brooke Bollman, Carsten Münk, Henrietta and Nymark-McMahon, all of the Salk Institute. The study was funded by the National Institutes of Health, the Elizabeth Glaser Pediatric AIDS Foundation and Concerned Parents for AIDS Research.


The Salk Institute for Biological Studies, located in La Jolla, Calif., is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health and conditions, and the training of future generations of researchers. Jonas Salk, M.D., founded the institute in 1960 with a gift of land from the City of San Diego and the financial support of the March of Dimes Birth Defects Foundation.

Robert Bradford | EurekAlert!
Further information:
http://www.salk.edu/

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>