Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV eludes body’s smart bomb

08.07.2003


HIV inactivates the body’s cellular smart bomb



HIV eludes one of the body’s key smart bomb defenses against infection, and this finding may lay the groundwork for new drugs to treat AIDS, according to a new Salk Institute study.

Nathaniel Landau, a Salk Institute associate professor, and his team have pinpointed how the body battles HIV, a tremendously complex and relentless virus. Their findings appear in the online issue of Cell and will be published in the July 11 print issue.


"What we have uncovered is a war that is being fought on the molecular level between viruses and cells. The war has been going on for millions of years, but we didn’t know about it until now," said Landau.

"We have been focusing on an antiviral system that we never knew about-a single protein called APOBEC3G. APOBEC3G would be a powerful inhibitor of viruses such as HIV, except for one problem: the virus has outsmarted it. During the evolutionary war between the virus and the host, the virus developed an effective counter-measure."

That counter-measure is a gene in HIV called virion infectivity factor (Vif). In an HIV-infected cell, according to Landau, Vif molecules are produced and then attach to the APOBEC3G protein molecules. Once attached, Vif prevents APOBEC3G from getting into the new viruses, and these viruses go on to replicate and spread throughout the body.

Having identified the interaction between Vif and APOBEC3G, Landau and his team then focused on a fundamental question: would it be possible to beat the virus at its own game?

"We found that mice also have the antiviral protein," said Landau. "But interestingly, HIV can’t recognize the mouse protein. As a result, mouse APOBEC3G is a powerful blocker of HIV replication. The mouse APOBEC3G protein goes into HIV and Vif can’t kick it out."

The mouse APOBEC3G functions like a smart bomb with a time-delayed fuse. When the virus is produced in an infected cell, APOBEC3G molecules get into the virus. At first, the protein does nothing; however, when the virus infects a new cell, APOBEC3G is activated. As HIV begins to copy its genes into DNA, APOBEC3G attacks the virus, creating massive mutations. APOBEC3G attacks the cytosines in the virus DNA, removing an essential chemical group to make them into uracil. The viral DNA is so badly mutated that the viral genes can’t function.

"Drug companies may be able to use this information to design a novel type of drug to treat HIV infection. They could develop drugs that attach to APOBEC3G, physically blocking Vif from attaching. If Vif can’t bind to APOBEC3G, the process of HIV replication could be halted," said Landau.

The lead author of the paper was Roberto Mariani, a staff scientist at the Salk Institute. Co-authors of the paper include Darlene Chen, Bärbel Schröfelbauer, Francisco Navarro, Renate König, Brooke Bollman, Carsten Münk, Henrietta and Nymark-McMahon, all of the Salk Institute. The study was funded by the National Institutes of Health, the Elizabeth Glaser Pediatric AIDS Foundation and Concerned Parents for AIDS Research.


The Salk Institute for Biological Studies, located in La Jolla, Calif., is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health and conditions, and the training of future generations of researchers. Jonas Salk, M.D., founded the institute in 1960 with a gift of land from the City of San Diego and the financial support of the March of Dimes Birth Defects Foundation.

Robert Bradford | EurekAlert!
Further information:
http://www.salk.edu/

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>