Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare versions of immune system genes stave off HIV infection

08.07.2003


Researchers have new answers as to why some HIV-infected individuals don’t progress to full-blown AIDS as rapidly as other HIV-positive people.



Northwestern University scientist Steven M. Wolinsky, M.D., and colleagues found that individuals with certain rare variations, or alleles, of two immune system genes -- human leukocyte antigens A and B (HLA-A and HLA-B) -- are better equipped to stave off HIV than people with more common sets of HLA alleles.

This finding indicates that HIV has evolved to attack the most common immune system genes and that there may be differences in how people respond to infection based on their HLA proteins. Importantly, the research, which was published in the July issue of Nature Medicine, showed that HIV influences human immune response just as humans put evolutionary pressure on the virus.


"We’re pushing on the microbe and it’s pushing back on us," Wolinsky said.

The group’s study, which was conducted in 996 HIV-infected men in Chicago component of the Multicenter AIDS Cohort Study (MACS), also has major therapeutic implications for determining the patients who require more aggressive treatment and for developing AIDS vaccines, Wolinsky said.

Wolinsky is the Samuel J. Sackett Professor and chief of infectious disease at the Feinberg School of Medicine and at Northwestern Memorial Hospital. He also is director of the Great Lakes Regional Center for AIDS Research.

HLA molecules help trigger activity of infection-fighting T cells. During the immune response, HLA proteins bind bits of an invading microbe’s proteins in an infected cell, which are then presented on the infected cell’s surface to killer T cells. The killer T cells, also known as cytotoxic T cells, destroy the infected cell and thereby prevent spread of infection.

Importantly, the study demonstrated the first clinical application of a new statistical method, called minimum description length (MDL), that enabled the researchers to analyze the hundreds of HLA-A and HLA-B alleles found in the Chicago HIV study population and classify patients into disease progression groups based on their ability to bind specific microbial proteins. The investigators were then able to associate nine different HLA "supertypes" with disease outcome.

They found that men with the most frequent HLA supertypes had the highest viral loads – less HIV in their blood -- while the men with the least frequent supertypes had the lowest. One of study’s more significant findings was that black men had lower viral loads than white men.

Findings from the study are especially pertinent to the development of AIDS vaccines. Since it appears that HIV has evolved to assail the most frequent alleles in the population, any vaccine designed to help killer T cells control HIV infection – which is based on the HLA – might not provide protection, Wolinsky said.

Further, because immune system alleles – and, thus disease progression rates -- vary with different populations and geographical areas, it is therefore possible that AIDS vaccines will have to be tailored to specific locations or even for individual patients. Wolinsky’s co-researcher were Elizabeth Trachtenberg, Children’s Hospital Oakland Research Institute Bette Korber, Los Alamos National Laboratory and Thomas Kepler, Duke University, among others.

Elizabeth Crown | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>