Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem-like cells from peripheral blood restore function in rats with severe stroke

07.07.2003


Rats with severe strokes recovered function following intravenous injections of stem-like cells obtained from circulating human blood — a finding that points to another potential cell therapy for stroke.



The study, by researchers at the University of South Florida Center for Aging and Brain Repair, appears in today’s issue of the journal Cell Transplantation.

The human blood donors were injected with granulocyte stimulating factor (G-CSF) to stimulate the release of stem-like cells from their bone marrow into the bloodstream before a blood sample was collected. These stem-like cells are known as peripheral blood progenitor cells.


"This is the first demonstration that G-CSF stimulated peripheral blood cells promote functional recovery after a stroke," said Alison Willing, PhD, assistant professor of neurosurgery and first author of the study. "We were putting these cells into animals 24 hours after a stroke and seeing significant behavioral improvement. The animals behaved almost normally on our tests, just as they had before the stroke. That’s pretty amazing."

G-CSF stimulated peripheral blood cells have become an alternative treatment to bone marrow transplants for patients with blood cancers. They are easier to obtain, lead to faster recovery from chemotherapy and better survival.

Dr. Willing and her colleagues wanted to explore whether G-CSF treated peripheral blood cells might also be a treatment for central nervous system disorders. For the last few years, the USF Center for Aging and Brain Repair has been investigating alternatives to human embryonic stem cells, such as adult bone marrow stem cells and human umbilical cord blood (HUCB) cells, as treatments for stroke, spinal cord injury and other neurological disorders.

"Our findings suggest that mobilized peripheral blood cells might be a good candidate for early treatment of central nervous system disorders like stroke," said Paul R. Sanberg, PhD, DSc, professor of neurosurgery and director of the USF Center for Aging and Brain Repair. "They appear to be more readily accessible and easier to isolate than bone marrow and, like bone marrow, could be donated by patients for their own use."

In an editorial accompanying the USF study, authors Cesar Borlongan, PhD, and David Hess, MD, both of the Medical College of Georgia, also suggest that a patient’s own peripheral blood stem cells might be a source of cell therapy for stroke. "Administration of G-CSF itself (an already FDA-approved drug) may mobilize progenitor cells from the bone marrow compartment into the peripheral blood where they can ’home’ to the brain and have a protective or restorative effect. This would avoid the need to isolate cells and reinject them."

For this pilot study, the USF team compared the effect of G-CSF stimulated peripheral blood cells with that of HUCB cells in a rat model for severe stroke. An earlier report by researchers at USF and Henry Ford Hospital in Detroit reported that intravenous injections of HUCB cells helped rats recover from strokes faster.

The USF team looked at three groups of rats induced to have symptoms of stroke.
The first group was intravenously injected with G-CSF stimulated peripheral blood cells 24 hours after a stroke. These cells were collected from the circulating blood of human blood donors through a process known as leukapheresis. Because the donors had received G-CSF before their blood was drawn, the resulting blood sample included a larger-than-normal population of immature, undifferentiated cells with the capacity to become any cell in the body, including neurons.

The second group was intravenously injected with HUCB cells 24 hours after the stroke.

The third group, a control, received no cellular treatment.

The researchers found that, following cell therapy, the stroke-induced hyperactive behavior of the rats was reduced to a pre-stroke level of normal activity. The improvement was similar whether the rats had been treated with peripheral blood cells or HUCB cells. Unlike humans, who are often paralyzed following a severe stroke, rats typically become abnormally active.

In addition, both the G-CSF stimulated peripheral blood cells and HUCB cells prevented the rats from developing stroke-associated motor asymmetry — the favoring of one side over another. The control rats displayed a significant increase in motor bias following stroke.

The researchers are unsure how these peripheral blood cells improve functional recovery, but they suspect the transplanted cells may secrete protective substances that prevent further brain damage rather than replacing already damaged neurons. One month, the length of the USF study, likely was not enough time for a stem-like peripheral blood cell to change into a replacement neuron and sprout functioning fibers in the brain, Dr. Willing said.

Dr. Willing and her colleagues are continuing to try to determine how the peripheral blood cells work, as well as the optimal time, method and number of cells to deliver following a stroke.


Media Contact:
Marissa Emerson
Health Sciences Public Affairs
(813) 974-3300
memerson@hsc.usf.edu

Marissa Emerson | USF
Further information:
http://www.hsc.usf.edu/publicaffairs/releases/peripheralstemcells.html

More articles from Health and Medicine:

nachricht Penn study identifies new malaria parasites in wild bonobos
21.11.2017 | University of Pennsylvania School of Medicine

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>