Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stem-like cells from peripheral blood restore function in rats with severe stroke

07.07.2003


Rats with severe strokes recovered function following intravenous injections of stem-like cells obtained from circulating human blood — a finding that points to another potential cell therapy for stroke.



The study, by researchers at the University of South Florida Center for Aging and Brain Repair, appears in today’s issue of the journal Cell Transplantation.

The human blood donors were injected with granulocyte stimulating factor (G-CSF) to stimulate the release of stem-like cells from their bone marrow into the bloodstream before a blood sample was collected. These stem-like cells are known as peripheral blood progenitor cells.


"This is the first demonstration that G-CSF stimulated peripheral blood cells promote functional recovery after a stroke," said Alison Willing, PhD, assistant professor of neurosurgery and first author of the study. "We were putting these cells into animals 24 hours after a stroke and seeing significant behavioral improvement. The animals behaved almost normally on our tests, just as they had before the stroke. That’s pretty amazing."

G-CSF stimulated peripheral blood cells have become an alternative treatment to bone marrow transplants for patients with blood cancers. They are easier to obtain, lead to faster recovery from chemotherapy and better survival.

Dr. Willing and her colleagues wanted to explore whether G-CSF treated peripheral blood cells might also be a treatment for central nervous system disorders. For the last few years, the USF Center for Aging and Brain Repair has been investigating alternatives to human embryonic stem cells, such as adult bone marrow stem cells and human umbilical cord blood (HUCB) cells, as treatments for stroke, spinal cord injury and other neurological disorders.

"Our findings suggest that mobilized peripheral blood cells might be a good candidate for early treatment of central nervous system disorders like stroke," said Paul R. Sanberg, PhD, DSc, professor of neurosurgery and director of the USF Center for Aging and Brain Repair. "They appear to be more readily accessible and easier to isolate than bone marrow and, like bone marrow, could be donated by patients for their own use."

In an editorial accompanying the USF study, authors Cesar Borlongan, PhD, and David Hess, MD, both of the Medical College of Georgia, also suggest that a patient’s own peripheral blood stem cells might be a source of cell therapy for stroke. "Administration of G-CSF itself (an already FDA-approved drug) may mobilize progenitor cells from the bone marrow compartment into the peripheral blood where they can ’home’ to the brain and have a protective or restorative effect. This would avoid the need to isolate cells and reinject them."

For this pilot study, the USF team compared the effect of G-CSF stimulated peripheral blood cells with that of HUCB cells in a rat model for severe stroke. An earlier report by researchers at USF and Henry Ford Hospital in Detroit reported that intravenous injections of HUCB cells helped rats recover from strokes faster.

The USF team looked at three groups of rats induced to have symptoms of stroke.
The first group was intravenously injected with G-CSF stimulated peripheral blood cells 24 hours after a stroke. These cells were collected from the circulating blood of human blood donors through a process known as leukapheresis. Because the donors had received G-CSF before their blood was drawn, the resulting blood sample included a larger-than-normal population of immature, undifferentiated cells with the capacity to become any cell in the body, including neurons.

The second group was intravenously injected with HUCB cells 24 hours after the stroke.

The third group, a control, received no cellular treatment.

The researchers found that, following cell therapy, the stroke-induced hyperactive behavior of the rats was reduced to a pre-stroke level of normal activity. The improvement was similar whether the rats had been treated with peripheral blood cells or HUCB cells. Unlike humans, who are often paralyzed following a severe stroke, rats typically become abnormally active.

In addition, both the G-CSF stimulated peripheral blood cells and HUCB cells prevented the rats from developing stroke-associated motor asymmetry — the favoring of one side over another. The control rats displayed a significant increase in motor bias following stroke.

The researchers are unsure how these peripheral blood cells improve functional recovery, but they suspect the transplanted cells may secrete protective substances that prevent further brain damage rather than replacing already damaged neurons. One month, the length of the USF study, likely was not enough time for a stem-like peripheral blood cell to change into a replacement neuron and sprout functioning fibers in the brain, Dr. Willing said.

Dr. Willing and her colleagues are continuing to try to determine how the peripheral blood cells work, as well as the optimal time, method and number of cells to deliver following a stroke.


Media Contact:
Marissa Emerson
Health Sciences Public Affairs
(813) 974-3300
memerson@hsc.usf.edu

Marissa Emerson | USF
Further information:
http://www.hsc.usf.edu/publicaffairs/releases/peripheralstemcells.html

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Multifunctional Platform for the Delivery of Gene Therapeutics

22.01.2018 | Life Sciences

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>