Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug improves the sense of touch, Science study says

04.07.2003


Scientists used a stimulation technique to improve the sensitivity of people’s fingertips, and then gave them drugs that either doubled or deleted this effect. Similar skin stimulation/drug treatment combinations may eventually help the elderly or stroke victims button shirts and aid professional pianists according to the authors of a paper appearing in the 04 July issue of the journal Science, published by AAAS, the science society.



Finger stimulations and drugs can temporarily reorganize parts of the human brain. This stimulation, called co-activation, shuffles the synapses that link neurons. The stimulated area becomes more sensitive as more neurons are recruited to process encountered tactile information. The scientists showed that amphetamine doubled stimulation-induced gains in tactile acuity. In the presence of an alternate drug, an NMDA blocker, the improvements in tactile acuity, or perceptual learning, gained via finger stimulations were lost.

Dinse said that related treatments could improve a person’s ability to read Braille and that drug-mediated muscle stimulation could help the elderly and chronic pain patients perform everyday tasks.


"We are at the beginning of an era where we can interact with the brain. We can apply what we know about brain plasticity to train it to alter behavior. People are always trying to find ways to improve learning. What we tested is unconscious skill learning. How far could this carry to cognitive learning?…that remains to be seen," said Dinse.

"My personal opinion," Dinse maintained, "is that progress in brain pharmacology will sooner or later result in implications that are equally or possibly more dramatic than the implications tied to discussions about genes and cloning."

To understand tactile acuity, imagine closing your eyes and running your hands over a boulder. A high degree of tactile acuity translates into the ability to sense lots of variety in the textures of the rock.

To quantify changes in tactile acuity, the researchers dropped the distance between two pins pressing against human skin. At some distance, people can no longer detect two distinct pressure points on the tips of their index fingers.

Monitoring changes in the minimum distance that still allows for two-point detection provides a measure of tactile acuity and perceptual learning.

Dinse explained that the cortex of the human brain has both a sensory and a motor "body map." Using these maps unconsciously, humans navigate through the physical world.

"We are now finding ways to interact with the brain’s body maps. This has enormous power," said Dinse who explained that manipulating body maps housed in the brain can have an immediate impact on behavior and perception.

The brain modifies its body maps as a basic tool for learning and adapting to new situations. This disconnecting and reconnecting of neurons is known as synaptic plasticity.

In an attempt to alter their sensory body maps, participants wore an eight millimeter disc for three hours that stimulated a patch of skin on tips of their right index fingers. This coactivation boosts the number of neurons involved in processing tactile information coming from the area of stimulated skin. By this method, external stimulation to finger tips temporarily reorganized part of the cortex and modified the sensory body maps of the participants.

After 24 hours, the enhanced ability to detect pin points dropped to normal levels. Dinse noted that further coactivation of the same area quickly reestablished the heightened tactile acuity. With the goal of rehabilitation treatments in mind, Dinse is currently looking for ways to make the improved sensory reception more durable and long lasting.

The coactivation protocol described in this study requires no active participation by the participant and this makes it an attractive therapeutic approach, according to Dinse.

"In past experiments, we tested coactivation in people between 65 and 90 years old. The coactivation temporarily improved tactile acuity with little harassment to the subjects," said Dinse. "According to our new findings, certain drugs can enhance the effects of coactivation. The drug component makes this coactivation approach even more promising."



Hubert. R. Dinse, Patrick Ragert, Burkhard Pleger, Peter Schwenkreis and Martin Tegenthoff are from Ruhr-U. Bochum in Bochum, Germany.

Funding for this research was provided in part by the Deutsche Forschungsgemeinschaft (grant no.Di334/10-3 to Hubert Dinse and MartinTegenthoff and grant no. Di334/15 to Hubert Dinse) and by a grant of the Heinrich-und-Alma-Vogelsang-Stiftung to Peter Schwenkreis.

Founded in 1848, the American Association for the Advancement of Science (AAAS) has worked to advance science for human well-being through its projects, programs, and publications, in the areas of science policy, science education and international scientific cooperation. AAAS and its journal, Science, report nearly 140,000 individual and institutional subscribers, plus 272 affiliated organizations in more than 130 countries, serving a total of 10 million individuals. Thus, AAAS is the world’s largest general federation of scientists. Science is an editorially independent, multidisciplinary, peer-reviewed weekly that ranks among the world’s most prestigious scientific journals. AAAS administers EurekAlert!, the online news service, featuring the latest discoveries in science and technology.

Daniel Kane | EurekAlert!

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>