Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human genes can predict AIDS progression rate

03.07.2003


A Los Alamos National Laboratory researcher and her colleagues have found that people with less common types of proteins on their white blood cells seem to mount a better immune response against the Human Immunodeficiency Virus - the virus that causes AIDS - and tend to fight progression of the disease better than people with common white blood cell proteins.



The research, presented in the July issue of Nature Medicine, eventually might help researchers better understand and exploit potential weaknesses in HIV.

The researchers studied a large group of homosexual men who were enrolled in the Chicago component of the Multicenter AIDS Cohort Study - an ongoing study of the natural and treated history of thousands of men infected with HIV - headed by Dr. Steven Wolinsky. The confidentiality of all individual study participants was preserved and the study itself was conducted in accordance with the highest recognized and accepted ethical standards.


Los Alamos researcher Bette Korber, Elizabeth Trachtenberg of Children’s Hospital Oakland Research Institute and colleagues examined the levels of AIDS virus and a type of T-cell in study participants. In healthy people, these "helper T-cells" help mount an immune response to an attacking organism. Since the AIDS virus attacks and destroys helper T-cells in humans - thereby limiting and eventually destroying a patient’s ability to stop the virus from replicating - the number of T-cells within an individual person is an indicator of the progression of the disease; the fewer the T-cells, the greater the level of HIV infection. The researchers were able to track the progression of the disease and the viral load within study participants over time.

Korber, Trachtenberg and colleagues compared viral load and rates of progression to proteins contained on the surface of white blood cells of study participants. The proteins, called human leukocyte antigens (HLAs), perform key functions in helping the body fight infection. They enable one type of T-cell that destroys cells infected with virus to recognize those infected cells. Destroying infected cells stops pathogens from multiplying within those infected cells.

HLAs come in several varieties, or types, and exhibit tremendous genetic diversity. Everyone carries different combinations of these proteins. This diversity ensures that no single pathogen can decimate an entire population. Consequently, human populations tend to maximize and increase the frequency of HLA subtypes to provide better immunity against a range of pathogens. Nevertheless, pathogens evolve over time and develop the ability to disguise themselves and hide from HLAs. The study indicates that the AIDS virus has developed mechanisms to evade the most common immune responses prompted by the most common HLA types.

In fact, Korber and her colleagues found that study participants who had the most common HLA protein types tended to succumb to progression to AIDS significantly more quickly than the participants who had more rare HLA protein types. In other words, the study indicates that HIV is able to outwit the most common HLA types that it usually has to confront, and to overwhelm the body’s immune system in individuals with common HLAs much more quickly than it can in patients with rare HLA types.

The researchers also were able to correlate the overall viral load of study participants with their combination of particular HLA types. Those patients with the more common proteins tended to get higher overall viral loads more rapidly than their rare-protein counterparts.

The study suggests that HIV adapts to the most frequent HLA proteins in a population, providing a selective advantage for patients with rare HLA proteins.

Korber and her colleagues cannot be absolutely sure that other subtle biological factors contribute to the association between HLA types and HIV progression. Therefore, Korber says, independent studies on other infected populations will be important to verify or refute the results of this study.


Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health and national security concerns.

James R. Rickman | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>