Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human genes can predict AIDS progression rate

03.07.2003


A Los Alamos National Laboratory researcher and her colleagues have found that people with less common types of proteins on their white blood cells seem to mount a better immune response against the Human Immunodeficiency Virus - the virus that causes AIDS - and tend to fight progression of the disease better than people with common white blood cell proteins.



The research, presented in the July issue of Nature Medicine, eventually might help researchers better understand and exploit potential weaknesses in HIV.

The researchers studied a large group of homosexual men who were enrolled in the Chicago component of the Multicenter AIDS Cohort Study - an ongoing study of the natural and treated history of thousands of men infected with HIV - headed by Dr. Steven Wolinsky. The confidentiality of all individual study participants was preserved and the study itself was conducted in accordance with the highest recognized and accepted ethical standards.


Los Alamos researcher Bette Korber, Elizabeth Trachtenberg of Children’s Hospital Oakland Research Institute and colleagues examined the levels of AIDS virus and a type of T-cell in study participants. In healthy people, these "helper T-cells" help mount an immune response to an attacking organism. Since the AIDS virus attacks and destroys helper T-cells in humans - thereby limiting and eventually destroying a patient’s ability to stop the virus from replicating - the number of T-cells within an individual person is an indicator of the progression of the disease; the fewer the T-cells, the greater the level of HIV infection. The researchers were able to track the progression of the disease and the viral load within study participants over time.

Korber, Trachtenberg and colleagues compared viral load and rates of progression to proteins contained on the surface of white blood cells of study participants. The proteins, called human leukocyte antigens (HLAs), perform key functions in helping the body fight infection. They enable one type of T-cell that destroys cells infected with virus to recognize those infected cells. Destroying infected cells stops pathogens from multiplying within those infected cells.

HLAs come in several varieties, or types, and exhibit tremendous genetic diversity. Everyone carries different combinations of these proteins. This diversity ensures that no single pathogen can decimate an entire population. Consequently, human populations tend to maximize and increase the frequency of HLA subtypes to provide better immunity against a range of pathogens. Nevertheless, pathogens evolve over time and develop the ability to disguise themselves and hide from HLAs. The study indicates that the AIDS virus has developed mechanisms to evade the most common immune responses prompted by the most common HLA types.

In fact, Korber and her colleagues found that study participants who had the most common HLA protein types tended to succumb to progression to AIDS significantly more quickly than the participants who had more rare HLA protein types. In other words, the study indicates that HIV is able to outwit the most common HLA types that it usually has to confront, and to overwhelm the body’s immune system in individuals with common HLAs much more quickly than it can in patients with rare HLA types.

The researchers also were able to correlate the overall viral load of study participants with their combination of particular HLA types. Those patients with the more common proteins tended to get higher overall viral loads more rapidly than their rare-protein counterparts.

The study suggests that HIV adapts to the most frequent HLA proteins in a population, providing a selective advantage for patients with rare HLA proteins.

Korber and her colleagues cannot be absolutely sure that other subtle biological factors contribute to the association between HLA types and HIV progression. Therefore, Korber says, independent studies on other infected populations will be important to verify or refute the results of this study.


Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health and national security concerns.

James R. Rickman | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Health and Medicine:

nachricht Electrical 'switch' in brain's capillary network monitors activity and controls blood flow
27.03.2017 | Larner College of Medicine at the University of Vermont

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>