Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Human genes can predict AIDS progression rate


A Los Alamos National Laboratory researcher and her colleagues have found that people with less common types of proteins on their white blood cells seem to mount a better immune response against the Human Immunodeficiency Virus - the virus that causes AIDS - and tend to fight progression of the disease better than people with common white blood cell proteins.

The research, presented in the July issue of Nature Medicine, eventually might help researchers better understand and exploit potential weaknesses in HIV.

The researchers studied a large group of homosexual men who were enrolled in the Chicago component of the Multicenter AIDS Cohort Study - an ongoing study of the natural and treated history of thousands of men infected with HIV - headed by Dr. Steven Wolinsky. The confidentiality of all individual study participants was preserved and the study itself was conducted in accordance with the highest recognized and accepted ethical standards.

Los Alamos researcher Bette Korber, Elizabeth Trachtenberg of Children’s Hospital Oakland Research Institute and colleagues examined the levels of AIDS virus and a type of T-cell in study participants. In healthy people, these "helper T-cells" help mount an immune response to an attacking organism. Since the AIDS virus attacks and destroys helper T-cells in humans - thereby limiting and eventually destroying a patient’s ability to stop the virus from replicating - the number of T-cells within an individual person is an indicator of the progression of the disease; the fewer the T-cells, the greater the level of HIV infection. The researchers were able to track the progression of the disease and the viral load within study participants over time.

Korber, Trachtenberg and colleagues compared viral load and rates of progression to proteins contained on the surface of white blood cells of study participants. The proteins, called human leukocyte antigens (HLAs), perform key functions in helping the body fight infection. They enable one type of T-cell that destroys cells infected with virus to recognize those infected cells. Destroying infected cells stops pathogens from multiplying within those infected cells.

HLAs come in several varieties, or types, and exhibit tremendous genetic diversity. Everyone carries different combinations of these proteins. This diversity ensures that no single pathogen can decimate an entire population. Consequently, human populations tend to maximize and increase the frequency of HLA subtypes to provide better immunity against a range of pathogens. Nevertheless, pathogens evolve over time and develop the ability to disguise themselves and hide from HLAs. The study indicates that the AIDS virus has developed mechanisms to evade the most common immune responses prompted by the most common HLA types.

In fact, Korber and her colleagues found that study participants who had the most common HLA protein types tended to succumb to progression to AIDS significantly more quickly than the participants who had more rare HLA protein types. In other words, the study indicates that HIV is able to outwit the most common HLA types that it usually has to confront, and to overwhelm the body’s immune system in individuals with common HLAs much more quickly than it can in patients with rare HLA types.

The researchers also were able to correlate the overall viral load of study participants with their combination of particular HLA types. Those patients with the more common proteins tended to get higher overall viral loads more rapidly than their rare-protein counterparts.

The study suggests that HIV adapts to the most frequent HLA proteins in a population, providing a selective advantage for patients with rare HLA proteins.

Korber and her colleagues cannot be absolutely sure that other subtle biological factors contribute to the association between HLA types and HIV progression. Therefore, Korber says, independent studies on other infected populations will be important to verify or refute the results of this study.

Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health and national security concerns.

James R. Rickman | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>