Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growth factor promotes new blood routes in rat brain, which may prevent stroke

01.07.2003


Injections of a stimulant agent into rat brains expanded blood vessels and improved blood flow, a finding that may lead to a new, non-invasive way to prevent stroke, researchers reported in today’s rapid access issue of Circulation: Journal of the American Heart Association.



Rats treated with the growth-promoting substance granulocyte macrophage-colony stimulating factor (GM-CSF) had almost twice as much arteriogenesis, the expansion of a brain artery, after one week compared to rats given saline solution. The increase was associated with improved circulation and accumulation of cells that are thought to play a key role in artery development.

“To the best of our knowledge, this is the first report of stimulation of arteriogenesis in the brain,” say co-lead authors Ivo R. Buschmann, M.D., and Hans-Jörg Busch, M.D. Both are investigators in the Research Group for Experimental and Clinical Arteriogenesis at Albert Ludwigs University in Freiburg, Germany.


The findings suggest that growth-stimulating substances may be a novel alternative to other stroke prevention strategies, which tend to emphasize surgery and other invasive techniques that improve blood flow to the brain, the researchers say.

Growth-stimulating factors have induced angiogenesis – the growth and expansion of tiny vessels called capillaries in the immediate vicinity of reduced blood flow – in patients with coronary artery disease. However, “angiogenesis studies have failed to improve outcome in stroke,” the researchers say.

Buschmann and Busch took a different approach. They tried to induce arteriogenesis by transforming pre-existing (collateral) arteries that were unused and located away from the blockage into functioning blood-carrying vessels capable of taking over for the blocked vessels. Arteriogenesis is an effective natural mechanism to compensate for blood flow because of blocked arteries in the heart, periphery or brain, Buschmann says.

In laboratory experiments, growth factors have stimulated collateral circulation in the extremities and in the coronary circulation. Recently, GM-CSF treatment induced arteriogenesis in a small group of patients with coronary artery disease.

To evaluate the potential of GM-CSF to stimulate arteriogenesis in the brain, Buschmann and Busch induced arterial obstructions that reduced blood flow to the brain of rats, and then injected them with the growth factor. Treatment continued for seven or 21 days. A second group of rats received saline over the same period.

The researchers studied the effects of treatment on expansion of the posterior cerebral artery (PCA), an artery that originates in the back of the brain and was not near the blocked arteries. In saline-treated rats the diameter of the PCA increased by 39 percent during the three weeks. The artery expanded much faster – 72 percent at the end of one week – in rats treated with GM-CSF. The growth factor-related arteriogenesis was associated with other evidence of improved blood flow, such as the ability to increase flow in response to carbon dioxide (a signal for reduced blood supply) and accumulation of macrophages, cells that are thought to be involved in the growth of collateral arteries.

“To the best of our knowledge, this is the first study that demonstrates an improvement of brain hemodynamic parameters (blood flow) after such treatment,” the researchers state.

Co-authors are Günter Mies, M.D., and Konstantin-Alexander Hossmann, M.D.

Carole Bullock | American Heart Association
Further information:
http://www.americanheart.org/
http://www.americanheart.org/presenter.jhtml;jsessionid=OA4I0G2TMNRAJWFZOAHCCZQ?identifier=3013235

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>