Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human stem cells improve movement in paralyzed rats

30.06.2003


In the current issue of the Journal of Neuroscience, Johns Hopkins researchers report that injection of human stem cells into the fluid around the spinal cord of each of 15 paralyzed rats clearly improved the animals’ ability to control their hind limbs -- but not at all in the way the scientists had expected.



"Our first hypothesis was that functional recovery came from human cells reconstituting the nerve circuits destroyed by the paralysis-inducing virus we gave the rats," says first author Douglas Kerr, M.D., Ph.D., assistant professor of neurology at the Johns Hopkins School of Medicine. "Some of the tens of thousands of implanted primitive human stem cells did become nerve cells or the like, but not enough to account for the physical improvements.

"Instead, these human embryonic germ cells create an environment that protects and helps existing rat neurons -- teetering on the brink of death -- to survive," he says.


It turns out that the implanted human cells spew out two important molecules that help protect rats’ existing nerve circuits. One of the molecules helps promote nerve cells’ survival, and the other encourages nerve cells to stay connected to their neighbors, says Kerr.

"The rats that got human stem cells were still far from normal, but even the improvements we saw could be important clinically," says Kerr, who emphasizes that any clinical application is still many years away.

In their experiments, spearheaded and majorly funded by the private organization Project ALS, the scientists first infected rats with a virus (Sindbis) they developed that selectively destroys nerve cells that control muscles in the hind limbs. Lou Gehrig’s disease, also known as ALS or amyotrophic lateral sclerosis, is similarly marked by a gradual loss of the nerves that control muscles, although its cause is unknown.

One-third of the animals then received transplants of human embryonic germ cells, which are capable of becoming any cell type, into their spinal fluid. The other rats served as controls and received either hamster kidney cells or human cells that don’t have stem cell properties.

Twelve weeks later, the 15 paralyzed rats that got human stem cells partially recovered control of their hind limbs. Moreover, their hind limbs were 40 percent stronger than control animals’. By 24 weeks, 11 of the 15 turned over at least three seconds faster when placed on their backs than before getting the human cells. Control rats did not improve, on average, over the 24 weeks of the study.

In paralyzed rats, Kerr and his team found that most of the implanted human cells migrated into the spinal cord, and many became cells of the nervous system -- astrocytes, neurons and even motor neurons -- while in uninjured animals the transplanted cells just sat on the spinal cord’s outer surface. However, even in injured animals, only about four human cells per rat became motor neurons that actually extended out of the spinal cord and into muscle, potentially creating a circuit that could control movement.

"We saw some physical recovery, and we saw human stem cells that had become motor neurons, but it turns out that the two observations weren’t related," says Kerr. "We saw functional recovery that wasn’t due to new neurons, and we had no idea how that could be possible."

Kerr then discovered that the rats’ own neurons were healthier in animals that received human stem cells. In subsequent laboratory experiments, Kerr found that the human stem cells produced copious amounts of two key growth signals. These were transforming growth factor-alpha (TGF-alpha), which promotes neurons’ survival, and brain derived neurotrophic factor (BDNF), which strengthens their connections to other neurons. When the scientists blocked these two signals in the laboratory, the stem cells’ beneficial effects disappeared.

"Even before motor neurons die, connecting neurons peel back as if they sense a sinking ship," says Kerr. "Simply keeping a neuron alive can’t improve physical abilities if it’s not connected to other neurons. It must be part of a circuit.

"In some ways our results reduce stem cells to the non-glamorous role of protein factories, but the cells still do some amazing, glamorous things we can’t explain," he adds. "For example, the white matter that surrounds the spinal cord was thought to be an impenetrable barrier to axon growth, but some of the transplanted cells not only migrated into the spinal cord, but also sent axons back out. It is just incredible."

"These are important first steps as we begin to analyze the potential of various types of stem cells in disorders of motor neurons," adds Jeffrey Rothstein, M.D., Ph.D., director of the Robert Packard Center for ALS Research at Johns Hopkins and a participant in the research team. "The unexpected role of non-neuronal cells in the recovery of motor function may have important therapeutic implications someday."

Human embryonic germ cells, derived from fetal tissue, were first isolated in the laboratory of co-author John Gearhart at Johns Hopkins. They are one of two types of human cells collectively referred to as pluripotent stem cells. The experiments were funded by Project ALS, Families of SMA and Andrew’s Buddies/FightSMA. Authors on the paper are Kerr, Jeronia Llado, Michael Shamblott, Nicholas Maragakis, David Irani, Thomas Crawford, Chitra Krishnan, Sonny Dike, John Gearhart and Rothstein, all of The Johns Hopkins University School of Medicine.


###
Under a licensing agreement between Geron Corporation and The Johns Hopkins University, Gearhart and Shamblott are entitled to a share of royalty received by the University on sales of products described in this article. Gearhart, Shamblott, and the University own Geron Corporation stock, which is subject to certain restrictions under University policy. The terms of this arrangement are being managed by The Johns Hopkins University in accordance with its conflict of interest policies.

Note to Producers: A video of a paralyzed rat and of a paralyzed rat that received a transplant of human stem cells can be found at: http://www.hopkinsmedicine.org/press/2003/June/video.htm

Joanna Downer | EurekAlert!
Further information:
http://www.jneurosci.org/
http://projectals.org
http://www.hopkinsmedicine.org

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>